Categories
aerospace astronomy B1051 BlackSky Global BlackSky Global 7 BlackSky Global 8 Broadband Commerical Space Earth observation falcon 9 kennedy space center Launch Launch Pad 39A LeoStella Mission Reports News Reusability rideshare spacex starlink Starlink 9 Telecom Vera Rubin Observatory VisorSat X Home Page Highlight

SpaceX closes out busy week with launch of more Starlink satellites

A Falcon 9 rocket takes off from pad 39A at NASA’s Kennedy Space Center at 1:12 a.m. EDT (0512 GMT) Friday. Credit: Stephen Clark / Spaceflight Now

With a Falcon 9 rocket launch Friday, SpaceX added 57 more satellites to the Starlink broadband fleet and deployed a pair of piggyback commercial Earth-imaging reconnaissance satellites for BlackSky, wrapping up a busy week that began with SpaceX’s return of two NASA astronauts to Earth and the first low-altitude test flight of the company’s next-generation Starship vehicle.

The 59 commercial satellites took off at 1:12:05 a.m. EDT (0512:05 GMT) on top of a Falcon 9 rocket from pad 39A at NASA’s Kennedy Space Center in Florida.

Nine Merlin 1D engines flashed to life with a deep rumble to hurl the 229-foot-tall (70-meter) rocket into the sky with 1.7 million pound of thrust. After pitching to align with a trajectory toward the northeast from Florida’s Space Coast, the Falcon 9 soared into the stratosphere trailing a brilliant orange exhaust plume before shutting down its first stage engines two-and-a-half minutes after liftoff.

Seconds later, the first stage booster dropped away from the Falcon 9’s second stage to begin a guided descent toward SpaceX’s drone ship parked in the Atlantic Ocean northeast of Cape Canaveral.

The Merlin engine on the second stage ignited two times to maneuver the Starlink and BlackSky satellites to a near-circular orbit nearly 250 miles (400 kilometers) above Earth. Meanwhile, the Falcon 9’s first stage booster flew to a propulsive landing on SpaceX’s rocket recovery vessel, a football field-sized platform positioned nearly 400 miles (around 630 kilometers) downrange from the Kennedy Space Center.

Two BlackSky Earth-imaging satellites, each with a mass of about 121 pounds (55 kilograms), deployed from the top of the stack of Starlink spacecraft more than an hour into the mission. BlackSky booked the launch for its satellites through Spaceflight, a Seattle-based rideshare broker, utilizing room in the Falcon 9 rocket’s payload compartment made available by SpaceX.

Read our earlier story for background on BlackSky and SpaceX’s rideshare launch service offering.

BlackSky is deploying a fleet of Earth observation satellites designed to monitor changes across Earth’s surface, feeding near real-time geospatial intelligence data to governments and corporate clients. The two microsatellites on Friday’s mission are designated Global 7 and Global 8, but they are actually the fifth and sixth operational satellites in the BlackSky fleet, which the company could eventually number more than 50 satellites, depending on customer demand.

The BlackSky satellites were built by LeoStella, a joint venture between Spaceflight Industries and Thales Alenia Space, a major European satellite manufacturer. LeoStella’s production facility is located in Tukwila, Washington, a suburb of Seattle.

The satellites have electrothermal propulsion systems that use water as a propellant. Each of the current generation of BlackSky Global spacecraft can capture up to 1,000 color images per day, with a resolution of about 3 feet (1 meter).

With the piggyback payloads away, the Falcon 9’s upper stage spun up for release of the 57 Starlink satellites at 2:45 a.m. EDT (0645 GMT). Live video beamed back to Earth from the Falcon 9 rocket showed the flat-panel satellites flying free of the upper stage as they soared nearly 250 miles over the Pacific Ocean near Baja California.

SpaceX declared success, concluding the 90th flight of a Falcon 9 rocket since 2010, and the 13th Falcon 9 launch of the year. It was also the 57th time SpaceX has recovered a reusable Falcon first stage booster, and it marked the fifth flight of the booster designated B1051.

The launch early Friday came less than five days after the return of SpaceX’s Crew Dragon spacecraft to Earth with NASA astronauts Bob Behnken and Doug Hurley, completing the ship’s first mission with crew members on-board. The test flight sets the stage for NASA’s certification of the Crew Dragon for regular crew rotation flights to the International Space Station.

On Tuesday, SpaceX performed a low-altitude “hop” test of a prototype of the company’s next-generation Starship space transportation vehicle.

SpaceX’s Starlink network is designed to provide low-latency, high-speed Internet service around the world. With Friday’s mission, SpaceX has launched 595 flat-panel Starlink spacecraft since beginning full-scale deployment of the orbital network in May 2019, making the company the owner of the world’s largest fleet of satellites.

Each of the flat-panel satellites weighs about a quarter-ton, and are built by SpaceX in Redmond, Washington. Once in orbit, they will deploy solar panels to begin producing electricity, then activate their krypton ion thrusters to raise their altitude to around 341 miles, or 550 kilometers.

SpaceX says it needs 24 launches to provide Starlink Internet coverage over nearly all of the populated world, and 12 launches could enable coverage of higher latitude regions, such as Canada and the northern United States.

The launch Friday will be the 10th mission to carry Starlink satellites into orbit, but the Starlink spacecraft deployed on the network’s first dedicated launch were designed to demonstrate satellite and payload performance. SpaceX has not said if any of those satellites might be incorporated into the operational fleet.

The Falcon 9 rocket can loft up to 60 Starlink satellites — each weighing about a quarter-ton — on a single Falcon 9 launch. But launches with secondary payloads, such as BlackSky’s new Earth-imaging satellites, can carry fewer Starlinks to allow the rideshare passengers room to fit on the rocket.

The initial phase of the Starlink network will number 1,584 satellites, according to SpaceX’s regulatory filings with the Federal Communications Commission. But SpaceX plans launch thousands more satellites, depending on market demand, and the company has regulatory approval from the FCC to operate up to 12,000 Starlink relay nodes in low Earth orbit.

Elon Musk, SpaceX’s founder and CEO, says the Starlink network could earn revenue to fund the company’s ambition for interplanetary space travel, and eventually establish a human settlement on Mars.

SpaceX fans sleuthing through coding on the Starlink website last month found images of a prototype version of the antenna consumers will use to connect to the Internet network.

Musk responded to the tweet, writing the the Starlink ground terminal “has motors to self-orient for optimal view angle. No expert installer required.”

SpaceX has not released pricing information for the Starlink service.

SpaceX says it will soon begin “beta testing” using the Starlink network. The company is collecting email information and mailing addresses from prospective customers, and SpaceX says it will provide updates on Starlink news and service availability to those who sign up.

The beta testing is expected to begin for users living at higher latitudes — such as the northern United States and southern Canada — where the partially-complete Starlink satellite fleet can provide more consistent service. SpaceX will send a Starlink kit including a small antenna, router and other equipment to people selected for beta testing.

Astronomers have raised concerns about the brightness of SpaceX’s Starlink satellites, and other companies that plan to launch large numbers of broadband satellites into low Earth orbit.

The Starlink satellites are brighter than expected, and are visible in trains soon after each launch, before spreading out and dimming as they travel higher above Earth.

SpaceX introduced a darker coating on a Starlink satellite launched in January in a bid to reduce the amount of sunlight the spacecraft reflects down to Earth. That offered some improvement, but not enough for ultra-sensitive observatories like the U.S government-funded Vera Rubin Observatory in Chile, which will collect all-sky images to study distant galaxies, stars, and search for potentially dangerous asteroids close to Earth.

SpaceX launched a satellite June 3 with a new unfolding radio-transparent sunshade to block sunlight from reaching bright surfaces on the spacecraft, such as its antennas. SpaceX says all Starlink satellites beginning with the spacecraft launched Friday will carry the sunshades.

Coupled with changes in how the satellites are oriented when they are at lower altitudes soon after launch, the sun visors could alleviate the most serious impacts on astronomy from the Starlink network, and eliminate the Starlink satellites from naked eye vision once they reach their 341-mile-high operational orbit.

SpaceX plans to fly a sunshade structure on new Starlink satellites. Credit: SpaceX

The Vera Rubin Observatory’s 3,200-megapixel camera will start astronomical surveys in 2022. Each image will cover a region of the sky the size of 40 full moons, and many of the images will include light streaks left by satellites from the Starlink network, and potentially other satellite constellations.

The worst impacts will come after dusk and before dawn. That’s a time of day when astronomers want to search for asteroids.

Astronomers on the Vera Rubin Observatory team say SpaceX has been working with them since last year to try to reduce the impacts of the Starlink network on their scientific program. Astronomers illuminated a Vera Rubin imaging detector in a test to see how it would respond to the passage of a satellite as bright as a Starlink. They found the satellite leaves behind not just a single trail, but “ghost” trails away from the spacecraft’s path.

Scientists from Vera Rubin Observatory said the ghost artifacts could be removed with software if the Starlink satellites are dimmer than 7th magnitude. Observations of the Starlink spacecraft with the darker coating indicate that change dimmed the satellite to about 6.1 magnitude, somewhat shy of Vera Rubin’s requirement.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace astronomy B1051 BlackSky Global BlackSky Global 7 BlackSky Global 8 Broadband Commerical Space Earth observation falcon 9 kennedy space center Launch Launch Pad 39A LeoStella Mission Reports Mission Status Center News Reusability rideshare spacex starlink Starlink 9 Telecom Vera Rubin Observatory VisorSat X Home Page Highlight Below Left

Live coverage: SpaceX plans overnight launch from Kennedy Space Center

Live coverage of the countdown and launch of a SpaceX Falcon 9 rocket from pad 39A at NASA’s Kennedy Space Center in Florida. The mission will launch SpaceX’s tenth batch of Starlink broadband satellites. Text updates will appear automatically below. Follow us on Twitter.

Spaceflight Now members can watch a live view of the pad. Join now.

Categories
aerospace astronomy B1051 BlackSky Global BlackSky Global 7 BlackSky Global 8 Broadband Commerical Space Earth observation falcon 9 kennedy space center Launch Launch Pad 39A LeoStella Mission Reports News Reusability rideshare spacex starlink Starlink 9 Telecom Vera Rubin Observatory VisorSat X Home Page Highlight

After delays, Falcon 9 rocket back on launch pad with Starlink satellites

SpaceX’s Falcon 9 rocket stands vertical on pad 39A on Thursday morning. Credit: Spaceflight Now

After a six-week delay for undisclosed reasons, SpaceX raised a Falcon 9 vertical on its launch pad Thursday at the Kennedy Space Center in Florida for another try early Friday to send into orbit the company’s next batch of Starlink Internet relay stations and a pair of commercial BlackSky Earth-imaging microsatellites.

The 229-foot-tall (70-meter) launcher is set for takeoff at 1:12:05 a.m. EDT (0512:05 GMT) Friday from pad 39A at the Kennedy Space Center with 57 more Starlink satellites.

It will be SpaceX’s first launch to carry a full set of Starlink satellites equipped with new sunshades, or visors, in an attempt to make the spacecraft less visible to ground-based telescopes, addressing concerns voiced by astronomers that thousands of Starlink satellites could interfere with scientific observations.

“All Starlink satellites on this flight are equipped with a deployable visor to block sunlight from hitting the brightest spots of the spacecraft — a measure SpaceX has taken as part of our work with leading astronomical groups to mitigate satellite reflectivity,” SpaceX says on its website.

Two commercial Earth observation satellites from BlackSky will accompany the Starlink payloads into orbit, taking advantage of SpaceX’s rideshare service, which sells excess capacity on Falcon 9 missions to other companies.

The mission set for launch Friday was originally supposed to take off in late June, but SpaceX has delayed the flight multiple times. The company has not disclosed any details about the nature of the problems — other than weather — that have delayed the Starlink/BlackSky mission.

The Starlink/BlackSky launch was supposed to take off June 26, but SpaceX delayed the mission to conduct additional pre-launch checkouts, the company said on Twitter. A launch attempt July 8 was scrubbed minutes before liftoff by poor weather.

SpaceX called off another launch attempt July 11, and the company again said officials made the decision “to allow more time for checkouts,” without providing further details.

The concerns that delayed the Starlink/BlackSky launch have not affected other SpaceX missions.

SpaceX successfully launched two Falcon 9 rockets June 30 and July 20 from Cape Canaveral with a U.S. military GPS navigation satellite and the Anasis 2 military communications satellite for South Korea.

The Starlink/BlackSky launch was tentatively planned to launch last week from the Kennedy Space Center, but there were range safety concerns about the Falcon 9 rocket taking off from a pad near where NASA’s Perseverance rover — with a nuclear power generator on-board — was being readied for takeoff.

SpaceX says the Falcon 9 rocket poised for launch Friday will be powered by a kerosene-fueled first stage booster that previously flew on four missions, beginning with the launch of the company’s Crew Dragon spaceship on its first unpiloted test flight to the International Space Station on March 2, 2019.

Since then, the reusable first stage booster — designated B1051 — launched and landed successfully on missions June 12, 2019, and Jan. 29 and April 22 of this year. This will be the fifth flight of this particular first stage booster.

The launch early Friday will be the 90th flight of a Falcon 9 rocket since 2010, and the 13th launch by SpaceX so far this year.

A Falcon 9 first stage booster lands on SpaceX’s drone ship Jan. 29 in the Atlantic Ocean following a previous Starlink launch. The same booster will launch again on Friday’s mission. Credit: SpaceX

SpaceX’s launch team will ready the rocket for loading of super-chilled, densified propellants Thursday night, before the start of the countdown’s automated sequencer at 12:37 a.m. EDT (0437 GMT).

At that time, kerosene and liquid oxygen will begin pumping aboard the Falcon 9 rocket’s first stage, and kerosene will start flowing into the rocket’s second stage. At 12:56 a.m. EDT (0456 GMT), SpaceX will start filling the second stage with its liquid oxygen supply.

In the final 10 minutes of the countdown, the Falcon 9 will begin chilling its engine plumbing for ignition, activate and check out its hydraulic systems, and pressurize its cryogenic propellant tanks for flight.

Nine Merlin 1D engines will flash to life at the base of the Falcon 9 rocket, and hold-down clamps will open to allow the launcher to fly away from pad 39A at 1:12 a.m. EDT (0512 GMT).

Heading northeast over the Atlantic Ocean, the Falcon 9 will surpass the speed of sound before shutting down its first stage engines at T+plus 2 minutes, 32 seconds. Four seconds later, the booster will separate to begin a controlled descent toward SpaceX’s drone ship “Of Course I Still Love You” parked in the Atlantic Ocean nearly 400 miles (about 630 kilometers) downrange from Cape Canaveral.

The booster will target a propulsive landing on the floating platform nearly eight-and-a-half minutes into the mission.

Meanwhile, the Falcon 9’s second stage will ignite its single powerful Merlin 1D engine at T+plus 2 minutes, 44 seconds, to drive the 57 Starlink satellites and two BlackSky payloads into a preliminary orbit.

The second stage engine will shut down at T+plus 8 minutes, 51 seconds, to begin a coast halfway around the world before reigniting for a few seconds at T+plus 47 minutes, 18 seconds.

That will inject the Starlink and BlackSky satellites into a near-circular orbit ranging in altitude between 241 miles (388 kilometers) and 249 miles (401 kilometers) above Earth, with an inclination of 53 degrees to the equator.

The two BlackSky satellites will deploy from the top of the stack of Starlink satellites 61 and 66 minutes after liftoff.

BlackSky, based in Seattle, is deploying a fleet of Earth observation satellites designed to monitor changes across Earth’s surface, feeding near real-time geospatial intelligence data to governments and corporate clients. The two 121-pound (55-kilogram) satellites on Friday’s mission will become the fifth and sixth operational spacecraft in BlackSky’s fleet, which the company could eventually number more than 50 satellites, depending on customer demand.

The deployment of the BlackSky payloads will set the stage for separation of the 57 Starlink spacecraft at T+plus 1 hour, 33 minutes, or at 2:45 a.m. EDT (0645 GMT).

SpaceX’s Starlink network is designed to provide low-latency, high-speed Internet service around the world. SpaceX has launched 538 flat-panel Starlink spacecraft since beginning full-scale deployment of the orbital network in May 2019, making the company the owner of the world’s largest fleet of satellites.

With Friday’s launch, SpaceX will have delivered 595 Starlink satellites to orbit since May 2019.

SpaceX plans to debut a new sunshade structure on its future Starlink satellites. Credit: SpaceX

Each of the flat-panel satellites weighs about a quarter-ton, and are built by SpaceX in Redmond, Washington. Once in orbit, they will deploy solar panels to begin producing electricity, then activate their krypton ion thrusters to raise their altitude to around 341 miles, or 550 kilometers.

SpaceX says it needs 24 launches to provide Starlink Internet coverage over nearly all of the populated world, and 12 launches could enable coverage of higher latitude regions, such as Canada and the northern United States.

The launch Friday will be the 10th mission to carry Starlink satellites into orbit, but the Starlink spacecraft deployed on the network’s first dedicated launch were designed to demonstrate satellite and payload performance. SpaceX has not said if any of those satellites might be incorporated into the operational fleet.

The Falcon 9 rocket can loft up to 60 Starlink satellites — each weighing about a quarter-ton — on a single Falcon 9 launch. But launches with secondary payloads, such as BlackSky’s new Earth-imaging satellites, can carry fewer Starlinks to allow the rideshare passengers room to fit on the rocket.

The initial phase of the Starlink network will number 1,584 satellites, according to SpaceX’s regulatory filings with the Federal Communications Commission. But SpaceX plans launch thousands more satellites, depending on market demand, and the company has regulatory approval from the FCC to operate up to 12,000 Starlink relay nodes in low Earth orbit.

Elon Musk, SpaceX’s founder and CEO, says the Starlink network could earn revenue to fund the company’s ambition for interplanetary space travel, and eventually establish a human settlement on Mars.

SpaceX fans sleuthing through coding on the Starlink website last month found images of a prototype version of the antenna consumers will use to connect to the Internet network.

Musk responded to the tweet, writing the the Starlink ground terminal “has motors to self-orient for optimal view angle. No expert installer required.”

SpaceX has not released pricing information for the Starlink service.

SpaceX says it will soon begin “beta testing” using the Starlink network. The company is collecting email information and mailing addresses from prospective customers, and SpaceX says it will provide updates on Starlink news and service availability to those who sign up.

The beta testing is expected to begin for users living at higher latitudes — such as the northern United States and southern Canada — where the partially-complete Starlink satellite fleet can provide more consistent service. SpaceX will send a Starlink kit including a small antenna, router and other equipment to people selected for beta testing.

Astronomers have raised concerns about the brightness of SpaceX’s Starlink satellites, and other companies that plan to launch large numbers of broadband satellites into low Earth orbit.

The Starlink satellites are brighter than expected, and are visible in trains soon after each launch, before spreading out and dimming as they travel higher above Earth.

SpaceX introduced a darker coating on a Starlink satellite launched in January in a bid to reduce the amount of sunlight the spacecraft reflects down to Earth. That offered some improvement, but not enough for ultra-sensitive observatories like the U.S government-funded Vera Rubin Observatory in Chile, which will collect all-sky images to study distant galaxies, stars, and search for potentially dangerous asteroids close to Earth.

SpaceX launched a satellite June 3 with a new unfolding radio-transparent sunshade to block sunlight from reaching bright surfaces on the spacecraft, such as its antennas. SpaceX says all Starlink satellites beginning with the spacecraft on the launch Friday will carry the sunshades.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
5G aerospace astronomy Atlas 5 Boeing Boeing 702SP C-band Commercial Space Electric Propulsion falcon 9 Federal Communications Commission GEOStar 3 Launch Mission Reports News Northrop Grumman SES SES 18 SES 19 SES 20 SES 21 spacex Telecom United Launch Alliance X Home Page Highlight

ULA, SpaceX win contracts to launch satellites for SES in 2022

File photo of a previous Atlas 5 launch in the “531” configuration with three solid rocket boosters. Credit: United Launch Alliance

SES has selected United Launch Alliance and SpaceX to launch up to five new commercial C-band communications satellites from Cape Canaveral in 2022 aboard Atlas 5 and Falcon 9 rockets, officials announced Wednesday.

Two Boeing-built communications satellites will launch together on a ULA Atlas 5 rocket, and two telecom craft made by Northrop Grumman will launch aboard a SpaceX Falcon 9 rocket, according to SES, a global communications satellite operator based in Luxembourg.

The SES 18 and 19 satellites, based on Northrop Grumman’s GEOStar 3 satellite platform, will launch stacked together on a SpaceX Falcon 9 rocket from Cape Canaveral in 2022, SES said. SES also awarded SpaceX a contract to launch another C-band satellite if required.

The SES 20 and 21 communications satellites are slated to launch in tandem aboard a ULA Atlas 5 rocket, also in 2022, SES said.

SES ordered the four satellites from Boeing and Northrop Grumman in June to replace C-band capacity being transitioned to 5G cellular network services by the Federal Communications Commission. At the same time, Intelsat ordered six new C-band communications satellites from Maxar and Northrop Grumman as part of its C-band transition plan. Launch services contracts for the new Intelsat satellites have not been announced.

SES said it considered only U.S. launchers when awarding the launch services contracts, and having the new satellites in geostationary orbit on time is a high priority. That essentially left ULA and SpaceX as the only companies eligible for the contracts.

Financial terms for the launch contracts were not disclosed by SES, SpaceX, or ULA.

Suzanne Ong, an SES spokesperson, said the division of launch contracts between ULA and SpaceX — rivals in the U.S. launch business — fit the different offerings provided by the Atlas 5 and Falcon 9 rockets.

The Atlas 5 rocket will deploy the SES 20 and 21 satellites into a higher orbit, utilizing the long-duration, multiple-restart capability of the rocket’s Centaur upper stage. That will place the satellites closer to their final operating positions in geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator.

SES 20 and 21 will be built by Boeing and based on the Boeing 702SP spacecraft bus with all-electric propulsion. Electric thrusters are more efficient than conventional rocket engines, allowing the satellite to need less fuel during its mission. That results in a lighter satellite.

But the electric thrusters do not have as much thrust as a liquid-fueled thruster, so it takes longer for a satellite with all-electric propulsion to reach geostationary orbit.

“The Boeing 702SP satellites, relying only on electrical propulsion, would take longer to reach designated geostationary orbit if launched on SpaceX,” Ong said in response to questions from Spaceflight Now. “This is the reason why ULA is launching Boeing satellites and SpaceX is launching the NG (Northrop Grumman) satellites.”

Jessica Rye, a ULA spokesperson, said the SES 20 and 21 satellites will launch on the “531” variant of the Atlas 5 rocket with a 5-meter payload fairing and three strap-on solid rocket boosters. That configuration has flown three times to date, and is set to launch a fourth time in September with a classified payload for the National Reconnaissance Office, the U.S. government’s spy satellite agency.

File photo of a Falcon 9 launch from pad 40 at Cape Canaveral Air Force Station. Credit: SpaceX

“Clearing mid-band spectrum expeditiously while protecting cable neighborhoods across America is a huge undertaking and one that requires partners that can deliver mission success and schedule assurance,” said Steve Collar, CEO at SES. “We are thrilled to be working with ULA again and partnering to meet the FCC’s ambitious timeline for the accelerated clearing of C-band spectrum.”

“We are pleased SES selected ULA and our proven Atlas 5 for this important commercial launch service,” said Tory Bruno, ULA’s president and CEO. “Atlas 5 is known for its unmatched level of schedule certainty and reliability and this launch is critical to the timely clearing of C-band spectrum, empowering America’s accelerated implementation of 5G.

“ULA’s legacy of performance, precision and mission design flexibility allow us to deliver a tailored launch service that minimizes orbit raising time and perfectly meet our customer’s requirements,” Bruno said in a statement. “We are thrilled to provide this optimized launch solution to SES for this crucial launch.”

Two SES satellites have launched on previous Atlas 5 rocket missions in 2004 and 2006. ULA now has two commercial launches in its Atlas 5 backlog, along with a ViaSat 3 broadband payload due to fly on the most power Atlas 5 configuration with five solid rocket boosters.

The Northrop Grumman-built SES 18 and 19 satellites will use a combination of electric and liquid propulsion for post-launch orbit-raising maneuvers.

“We have a deep and trusted relationship with SpaceX having been the first to launch a commercial satellite with them and subsequently the first commercial company to adopt the flight-proven booster and we could not be more confident in their ability to deliver on this time-critical mission,” Collar said in a statement.

Six SES satellites have launched on SpaceX Falcon 9 rockets to date.

“SES is one of SpaceX‘s most-valued partners, and we are proud of their continued trust in our capabilities to reliably deliver their satellites to orbit,” said Gwynne Shotwell, SpaceX’s president and chief operating officer. “We are excited to once again play a role in executing SES’s solutions to meet their customers’ needs.”

SES will soon order two additional C-band satellites from U.S. manufacturers as ground spares. The contract option with SpaceX to place a third C-band satellite into orbit would cover the launch of one of the ground spares, Ong said.

“The ground spares will only be launched if there is a systematic problem that delays the satellite construction, or if there is a launch failure or any other issue that puts the accelerated clearing schedule at risk,” Ong said in response to questions from Spaceflight Now. “In case of a launch failure, SpaceX will launch one of the other C-band satellites that SES will order soon.”

The four SES satellites are part of the Federal Communications Commission’s order finalized earlier this year to clear 300 megahertz of C-band spectrum for the roll-out of 5G mobile connectivity networks.

The FCC plans to auction U.S. C-band spectrum — currently used for satellite-based video broadcast services to millions of customers — to 5G operators in December. In compensation for losing the spectrum, Intelsat is set to receive $4.87 billion and SES will get $3.97 billion from 5G bidders if they can accelerate the transition of C-band services to a smaller swath of spectrum by December 2023, two years before the FCC’s mandated deadline.

Artist’s concept of the SES 20 and SES 21 communications satellites to be manufactured by Boeing. Credit: Boeing

Intelsat and SES — along with operators with a smaller share of the U.S. C-band market — will also be reimbursed for their C-band relocation costs, including satellite manufacturing and launch expenses.

As part of the agreement, the satellite operators were incentivized to buy new C-band broadcasting satellites from U.S. manufacturers to operate in the 4.0 to 4.2 gigahertz swath of the C-band spectrum. The lower portion of the band previously allocated to satellite operators — 3.7 to 4.0 megahertz — is being transitioned to 5G services.

Ong said the ground spares SES is set to order soon will be available to launch on short notice to ensure SES can meet the FCC’s deadline to clear the upper part of the C-band spectrum for 5G services.

When it ordered the four new satellites from Boeing and Northrop Grumman in June, SES said each satellite will have 10 primary transponders, plus back-up equipment, to deliver television services to more than 120 million homes and enable other critical data services. At that time, SES said the satellites are scheduled for launch in the third quarter of 2022.

SES said in May that its board of directors approved an investment envelope of $1.6 billion to procure and launch the new C-band satellites, and pay for other equipment and services, such as signal filters on ground antennas, to accommodate the C-band transition to 5G services.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace Airbus Defense and Space Anasis Anasis 2 astronomy B1058 Commercial Space Complex 40 Eurostar E3000 falcon 9 Launch Lockheed Martin Military Space Mission Reports Ms. Chief Ms. Tree News Payload Fairing Reusability South Korea spacex Telecom X Sidebar

SpaceX shares video of first double fairing catch

SpaceX’s two fast-maneuvering payload fairing recovery vessels were in the right place at the right time Monday to catch both halves of the nose shroud jettisoned by a Falcon 9 rocket climbing into orbit with South Korea’s Anasis 2 military communications satellite.

The California-based launch company released a pair of videos Tuesday on Twitter, showing views from each of the fairing recovery boats as the vessels steered under the shroud shells descending under parachutes around 40 minutes after the Falcon 9’s liftoff from Cape Canaveral.

The twin recovery ships, named “Ms. Tree” and “Ms. Chief,” were located around 480 miles (775 kilometers) east of Cape Canaveral in the Atlantic Ocean for Monday’s mission.

The Falcon 9 rocket took off from Cape Canaveral at 5:30 p.m. EDT (2130 GMT) Monday with Anasis 2, South Korea’s first dedicated military communications satellite. On the way into orbit, the launcher jettisoned its first stage booster, which descended back to Earth for a pinpoint landing on SpaceX’s drone ship in the Atlantic Ocean.

Moments later, the Falcon 9’s upper stage ignited and then released the two-piece clamshell-like nose cone that shielded the Anasis 2 satellite from aerodynamic forces and airflow during the first few minutes of the flight. By that time, the rocket was flying at an altitude of about 68 miles, or 110 kilometers, above the densest layers of the atmosphere.

The first stage maneuvered back to Earth using a series of propulsive burns of its main engines, allowing it to target touchdown on the SpaceX landing platform. The booster was making its second launch after its first use helped launch NASA astronauts aboard SpaceX’s Crew Dragon spacecraft May 30.

The re-flight of the first stage Monday — 51 days after its May 30 mission — marked the shortest turnaround between flights of a Falcon 9 booster.

The Falcon 9’s fairing shells come back to Earth in a more unguided fashion, using cold gas thrusters to orient themselves for deployment of a steerable parachute, or parafoil, to slow down before reaching the ocean.

The fairing recovery boats are each equipped with a giant net to catch the falling fairing halves. SpaceX has caught one fairing shell on prior missions — and plucked the other half from the ocean — but Monday’s achievement was the first time the company has netted both pieces of the fairing on the same launch.

Catching the fairing with the net helps reduce contamination from sea water, easing refurbishment of the nose cone for reuse on future flights.

SpaceX’s Falcon 9 rocket takes off from Cape Canaveral’s Complex 40 launch pad Monday with South Korea’s Anasis 2 satellite. The South Korean flag is seen emblazoned on the Falcon 9’s payload fairing. Credit: SpaceX

The company wants to more regularly reuse the fairing, eyeing it as the next step in reducing launch costs after proving the landing and reuse of Falcon booster stages. The fairing shells flown on Monday’s mission were brand new.

The Falcon 9’s fairing stands about 43 feet (13.1 meters) tall and measures about 17 feet (5.2 meters) in diameter.

SpaceX reused a fairing for the first time on a Falcon 9 launch last November carrying 60 of the company’s own Starlink broadband satellites into orbit. The company has since repeated the feat.

Other launch providers dispose of the fairing, but SpaceX began using a fast-moving boat to steer underneath a fairing following launches from California in early 2018. The efforts chalked up a series of near-misses, prompting engineers to evaluate reusing fairings that fell into the sea.

SpaceX has since added a second fairing recovery vessel to its fleet, and moved the fairing-catching boats to Florida, where the company has a higher launch rate.

The first fairing that SpaceX reused last November was retrieved from the ocean after a Falcon Heavy launch in April 2019.

Elon Musk, SpaceX’s founder and CEO, told reporters in 2018 that each new fairing costs around $6 million.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace Airbus Defense and Space Anasis Anasis 2 astronomy B1058 Commercial Space Complex 40 Eurostar E3000 falcon 9 Launch Military Space Mission Reports News Reusability South Korea spacex Telecom X Sidebar

SpaceX delivers South Korea’s first military satellite into on-target orbit

SpaceX’s Falcon 9 rocket lifts off from pad 40 at Cape Canaveral Air Force Station on Monday. Credit: Ken Kremer/SpaceUpClose.com

A SpaceX Falcon 9 rocket deployed South Korea’s first dedicated military satellite into orbit Monday a half-hour after a fiery launch from Cape Canaveral, helping fulfill an agreement between Lockheed Martin and the South Korean government in exchange for Korea’s purchase of F-35 fighter jets six years ago.

South Korea’s Anasis 2 military communications satellite rocketed away from Cape Canaveral at 5:30 p.m. EDT (2130 GMT) Monday on top of a Falcon 9 launcher. Nine Merlin main engines on the Falcon 9 rocket propelled the 229-foot-tall (70-meter) launcher off the ground, and the Falcon 9 turned east over the Atlantic Ocean, exceeding the speed of sound within about one minute.

Powered by the same first stage booster that launched astronauts May 30 on SpaceX’s Crew Dragon capsule, the Falcon 9 thundered into a sunny sky after a 30-minute delay Monday the company attributed to a passing rain shower.

The first stage shut down and separated from the Falcon 9’s second stage about two-and-a-half minutes after liftoff, beginning maneuvers to precisely touch down on SpaceX’s floating landing platform around 400 miles (645 kilometers) east of Cape Canaveral. The reusable first stage landed on target aboard the drone ship “Just Read The Instructions,” ready for return to Florida’s Space Coast for another flight.

The booster used on Monday’s launch set a record for the quickest turnaround time between flights of an orbital-class rocket stage at 51 days. The shortest span between launches of the same Falcon 9 booster was previously 62 days, which SpaceX achieved with a Feb. 17 mission.

NASA achieved a 54-day turnaround time between two launches of the space shuttle Atlantis in late 1985, a record never again matched during the 30-year-long shuttle program. The time elapsed between Atlantis’s landing and next launch was 50 days.

SpaceX may eclipse its rocket turnaround time record again in the coming weeks, with more missions on the company’s jam-packed launch schedule, all using reused rocket stages. The next brand new Falcon 9 booster is not expected to fly before late September.

Meanwhile, SpaceX’s second stage engine ignited two times to inject the Anasis 2 spacecraft into an elliptical transfer orbit stretching thousands of miles above above Earth. The satellite will use its on-board engine to circularize its orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator, where it will provide services for the South Korean military.

John Insprucker, a SpaceX engineer and manager who co-hosted the company’s launch webcast Monday, declared it a “totally successful mission.”

The Anasis 2 spacecraft was manufactured by Airbus Defense and Space in Toulouse, France, and is based on Airbus’s Eurostar E3000 satellite design.

Anasis 2 “will provide secured communications over wide coverage,” Airbus said in a statement.

South Korea procured the satellite — formerly known as KMilSatCom 1 — through an “offset” arrangement to offset South Korea’s purchase of F-35 fighter jets from Lockheed Martin. In exchange for South Korea’s purchase of 40 F-35 fighter jets — a deal reportedly valued at more than $6 billion — Lockheed Martin agreed to provide the Anasis 2 satellite to the South Korean military, among other offsets.

Lockheed Martin ultimately subcontracted the satellite manufacturing deal to Airbus, and booked launch services for Anasis 2 with SpaceX.

“Lockheed Martin is honored to deliver on the promise and commitment made to the Republic of Korea government with the successful launch of the Anasis 2 satellite,” Lockheed Martin said in a statement. “This launch and the expected in-orbit handover later this year are the first milestones signifying the completion of an offset project related to the sale of F-35s to the ROKG (Republic of Korea Government) in 2014.”

Before Anasis 2, South Korea’s military has relied on international and civilian-owned satellites for communications. A dual-use satellite named Anasis 1 launched in 2006 to provide commercial and military telecom services.

Further details about the Anasis 2 satellite are shrouded in secrecy at the wishes of the the spacecraft’s owner — the South Korean government. SpaceX did not broadcast live video of the Anasis 2 satellite deploying from the Falcon 9 rocket, citing a request from its customer.

The Anasis 2 satellite is prepared for shipment to Cape Canaveral from Airbus’s facility in Toulouse, France. Credit: Airbus Defense and Space

Elon Musk, SpaceX’s founder and CEO, tweeted later Monday that the company had successfully recovered both halves of the Falcon 9 rocket’s payload fairing using two boats stationed offshore in the Atlantic Ocean.

The twin fairing recovery vessels — named “Ms. Tree” and “Ms. Chief” — were dispatched to positions nearly 500 miles (800 kilometers) east of Cape Canaveral. Both ships are fitted with giant nets to try to catch the fairing halves, which descend under parachutes.

The Falcon 9 released the clamshell-like payload fairing around three-and-a-half minutes after liftoff Monday, once the rocket flew above the dense, lower layers of the atmosphere. The shroud protected the Anasis 2 satellite during the rocket’s initial climb away from Florida.

The successful fairing recovery marked the first time SpaceX achieved a double catch of both fairing halves on the same mission. On previous flights, SpaceX has either caught just one of the fairing shells, or retrieved them after splashing down in the ocean.

Monday’s mission was SpaceX’s 12th launch of the year, but it was the company’s first launch of 2020 dedicated to a customer other than NASA, the U.S. military, or SpaceX’s own Starlink Internet project.

Of SpaceX’s 11 previous missions this year, seven launched clusters of satellites for the company’s own Starlink broadband network. One of those missions carried a rideshare payload of three commercial SkySat Earth-observing satellites for Planet.

Three of SpaceX’s Falcon 9 missions so far in 2020 have been for NASA.

A Falcon 9 flight Jan. 19 launched a Crew Dragon capsule for a high-altitude test of the spaceship’s abort system. A Dragon cargo ship launched March 6 on a Falcon 9 rocket to resupply the International Space Station, and the first Crew Dragon flight with astronauts took off on a Falcon 9 rocket May 30.

SpaceX’s most recent launch before Monday delivered a GPS navigation satellite into orbit for the U.S. Space Force.

The market for large commercial geostationary satellites has experienced a downturn in the last few years, although there are signs that orders to build and launch geostationary communications spacecraft are on the uptick again.

SpaceX has another launch planned for an external foreign customer coming up later this month. Argentina’s SAOCOM 1B radar observation satellite is being prepared for launch at Cape Canaveral on a Falcon 9 rocket as soon as next week.

The launch of SAOCOM 1B was originally scheduled in March, but officials from CONAE — Argentina’s space agency — requested a delay in the launch due to travel and work restrictions related to the coronavirus pandemic. Using new physical distancing and safety protocols, crews returned to Cape Canaveral from Argentina earlier this month to resume preparations on the SAOCOM 1B satellite.

SpaceX also has several more Falcon 9 launches with Starlink satellites from Florida’s Space Coast in August. In September, SpaceX is gearing up for a launch with the next Crew Dragon spacecraft to carry astronauts to the space station, and another Falcon 9 flight with a GPS navigation satellite for the U.S. military.

Other missions on SpaceX’s manifest later this year — besides regularly-scheduled flights to add satellites to the Starlink Internet network — include Falcon 9 launches with a Dragon cargo craft to deliver supplies to the space station, commercial communications satellites for Turksat and SiriusXM, a joint U.S.-European oceanography satellite, and a rideshare mission carrying dozens of small satellites into polar orbit.

There is also a launch of a SpaceX Falcon Heavy rocket on the company’s schedule in late 2020. After taking off from the Kennedy Space Center, the heavy-lift rocket will deploy classified payloads into geostationary orbit for the U.S. Space Force.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace Airbus Defense and Space Anasis Anasis 2 astronomy B1058 Commercial Space Complex 40 Eurostar E3000 falcon 9 Launch Launch Timeline Military Space Mission Reports News Reusability South Korea spacex Telecom

Falcon 9 launch timeline with Anasis 2

SpaceX’s Falcon 9 rocket is set for liftoff from Cape Canaveral on Tuesday, heading due east over the Atlantic Ocean to deliver the South Korean Anasis 2 military communications satellite into orbit around 32 minutes later.

The 229-foot-tall (70-meter) rocket is poised for launch from pad 40 at Cape Canaveral Air Force Station in Florida during a launch window Monday opening at 5 p.m. EDT (2100 GMT) and closing at 8:55 p.m. EDT (0055 GMT).

Perched atop the rocket is the Anasis 2 communications satellite, a spacecraft manufactured by Airbus Defense and Space in Toulouse, France, and owned by the South Korean military.
After deployment from the upper stage of the Falcon 9 rocket in an elliptical transfer orbit, the Anasis 2 spacecraft will use its on-board hydrazine-fueled engine to boost itself into a circular geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator.

Based on Airbus’s Eurostar E3000 satellite design, Anasis 2 “will provide secured communications over wide coverage,” Airbus said in a statement.

The Falcon 9 first stage booster set to loft the Anasis 2 payload has one previous flight to its credit. It launched May 30 with NASA astronauts Doug Hurley and Bob Behnken on the first test flight of SpaceX’s Crew Dragon spacecraft with people on-board.

The timeline below outlines the launch sequence for the Falcon 9 flight with Anasis 2.

Data source: SpaceX

T-0:00:00: Liftoff

After the rocket’s nine Merlin engines pass an automated health check, hold-down clamps will release the Falcon 9 booster for liftoff from Complex 40.
After the rocket’s nine Merlin engines pass an automated health check, hold-down clamps will release the Falcon 9 booster for liftoff from pad 39A.

T+0:01:00: Mach 1

The Falcon 9 rocket reaches Mach 1, the speed of sound.
The Falcon 9 rocket reaches Mach 1, the speed of sound, as the nine Merlin 1D engines provide more than 1.7 million pounds of thrust.

T+0:01:12: Max Q

The Falcon 9 rocket reaches Max Q, the point of maximum aerodynamic pressure.
The Falcon 9 rocket reaches Max Q, the point of maximum aerodynamic pressure.

T+0:02:32: MECO

The Falcon 9’s nine Merlin 1D engines shut down.
The Falcon 9’s nine Merlin 1D engines shut down.

T+0:02:36: Stage 1 Separation

The Falcon 9’s first stage separates from the second stage moments after MECO.
The Falcon 9’s first stage separates from the second stage moments after MECO.

T+0:02:43: First Ignition of Second Stage

The second stage Merlin 1D vacuum engine ignites for an approximately 6-minute burn to put the rocket and SES 9 into a preliminary parking orbit.
The second stage Merlin 1D vacuum engine ignites for a five-and-a-half-minute burn to put the rocket and Anasis 2 spacecraft into a preliminary parking orbit.

T+0:03:34: Fairing Jettison

The 5.2-meter (17.1-foot) diameter payload fairing jettisons once the Falcon 9 rocket ascends through the dense lower atmosphere. The 43-foot-tall fairing is made of two clamshell-like halves composed of carbon fiber with an aluminum honeycomb core.
The 5.2-meter (17.1-foot) diameter payload fairing jettisons once the Falcon 9 rocket ascends through the dense lower atmosphere. The 43-foot-tall fairing is made of two clamshell-like halves composed of carbon fiber with an aluminum honeycomb core.

T+0:06:46: Stage 1 Entry Burn Complete

A subset of the first stage’s Merlin 1D engines complete an entry burn to slow down for landing. A final landing burn will occur just before touchdown.

T+0:08:06: SECO 1

The second stage of the Falcon 9 rocket shuts down after reaching a preliminary low-altitude orbit. The upper stage and SES 9 begin a coast phase scheduled to last more than 18 minutes before the second stage Merlin vacuum engine reignites.
The second stage of the Falcon 9 rocket shuts down after reaching a preliminary low-altitude orbit. The upper stage and Anasis 2 begin a coast phase scheduled to last more than 18 minutes before the second stage Merlin vacuum engine reignites.

T+0:08:31: Stage 1 Landing

The Falcon 9 rocket’s first stage booster touches down on SpaceX’s drone ship in the Atlantic Ocean.

T+0:26:32: Second Ignition of Second Stage

The Falcon 9's second stage Merlin engine restarts to propel the SES 9 communications satellite into a supersynchronous transfer orbit.
The Falcon 9’s second stage Merlin engine restarts to propel the Anasis 2 communications satellite into an elliptical transfer orbit.

T+0:27:28: SECO 2

The Merlin engine shuts down after a short burn to put the SES 10 satellite in the proper orbit for deployment.
The Merlin engine shuts down after a short burn to put the Anasis 2 satellite in the proper elliptical orbit for deployment.

T+0:32:29: Anasis 2 Separation

The SES 9 satellite separates from the Falcon 9 rocket in an orbit with a predicted high point of about 39,300 kilometers (24,400 miles), a low point of 290 kilometers (180 miles) and an inclination of 28 degrees. Due to the decision to burn the second stage nearly to depletion, there is some slight uncertainty on the orbital parameters based on the exact performance of the launcher.
The Anasis 2 satellite separates from the Falcon 9 rocket into an elliptical transfer orbit, on the way to a perch in geostationary orbit.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace Airbus Defense and Space Anasis Anasis 2 astronomy B1058 Commercial Space Complex 40 Eurostar E3000 falcon 9 Launch Military Space Mission Reports Mission Status Center News South Korea spacex Static Fire Telecom X Home Page Highlight

Live coverage: South Korean military satellite to launch today from Florida

Live coverage of the countdown and launch of a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida with the South Korean military’s Anasis 2 communications satellite. Text updates will appear automatically below. Follow us on Twitter.


SpaceX’s live video webcast begins around 15 minutes prior to launch, and will be available on this page.

Categories
aerospace Airbus Defense and Space Anasis Anasis 2 astronomy B1058 Commercial Space Complex 40 Eurostar E3000 falcon 9 Launch Military Space Mission Reports News South Korea spacex Static Fire Telecom X Sidebar

SpaceX going for rocket reuse record with South Korean satellite launch

File photo of a Falcon 9 rocket at Cape Canaveral’s Complex 40 launch pad. Credit: SpaceX

SpaceX aims to re-launch the Falcon 9 booster Monday that catapulted astronauts Doug Hurley and Bob Behnken toward the International Space Station in May, this time carrying a South Korean military communications satellite while pursuing a record for the quickest turnaround time between flights of an orbital-class rocket stage.

In a tweet Saturday, the California-based launch company confirmed plans to launch the South Korean Anasis 2 military communications satellite Monday from pad 40 at Cape Canaveral Air Force Station. The mission was previously scheduled to launch Tuesday, July 14, but SpaceX delayed the launch to address a problem on the Falcon 9’s second stage.

The launch window Monday opens at 5 p.m. EDT (2100 GMT) and runs until 8:55 p.m. EDT (0055 GMT). The official launch weather forecast calls for isolated rain showers at Cape Canaveral on Monday evening, but there’s a 70 percent chance of acceptable conditions for liftoff of the Falcon 9 rocket during the nearly four-hour launch window.

If the Falcon 9 rocket can take off with the Anasis 2 satellite Monday, or some time later this month, SpaceX will break its own record for the shortest turnaround between flights of the same Falcon 9 booster. The shortest span between launches of the same Falcon 9 booster to date has been 62 days, which SpaceX achieved with a Feb. 17 mission.

NASA achieved a 54-day turnaround time between two launches of the space shuttle Atlantis in late 1985, a record never again matched during the 30-year-long shuttle program. The time elapsed between Atlantis’s landing and next launch was 50 days.

Once the Anasis 2 mission is off the ground, SpaceX may eclipse its rocket turnaround time record again in the coming weeks.

Utilizing pad 40 at Cape Canaveral Air Force Station and pad 39A at the nearby Kennedy Space Center, SpaceX has five missions on its launch schedule from Florida’s Space Coast in the next month or so, beginning with the launch of Anasis 2 Monday.

SpaceX’s next launch of satellites for its Starlink broadband network is expected to launch some time in late July, although a firm launch date has not been confirmed by SpaceX. That mission was supposed to launch in late June from pad 39A at the Kennedy Space Center, but SpaceX has called off two launch attempts due to unspecified technical issues with the rocket.

Two commercial Earth-imaging microsatellites from BlackSky are hitching a ride to space on the Falcon 9 rocket with 57 of SpaceX’s own Starlink platforms. An official from Spaceflight, the rideshare launch broker that secured the ride for the BlackSky satellites on the Falcon 9, said Wednesday that the mission was then expected to take off toward the end of July.

SpaceX’s drone ship returns to Florida’s Space Coast on June 2 with the Falcon 9 booster used to launch the Crew Dragon spacecraft. Credit: Stephen Clark / Spaceflight Now

Argentina’s SAOCOM 1B radar observation satellite was previously scheduled for liftoff as soon as July 25 on a Falcon 9 rocket, and another batch of Starlink satellites — flying in tandem with three Earth-observing satellites from Planet — was expected to launch around the end of July.

Those launches are expected to be delayed as a result of the schedule slips encountered by the previous Anasis 2 and Starlink/BlackSky missions. Another Starlink launch on a Falcon 9 is also planned is also planned later in August from Cape Canaveral.

Schedules for subsequent Starlink missions have not been announced, but SpaceX is booked to launch the next Crew Dragon spacecraft with astronauts to the International Space Station and a GPS navigation satellite as soon as September.

SpaceX currently has five Falcon 9 boosters in its inventory, and the company has flown two brand new first stages in its 11 missions so far this year. At least two more new Falcon 9 first stages are scheduled to enter service in the coming months, with SpaceX’s next launch of astronauts and the next launch of a U.S. military GPS navigation satellite, both currently planned no earlier than September.

A Falcon Heavy launch planned in late 2020 with a clandestine U.S. military payload will fly with three Falcon rocket boosters, all brand new. SpaceX officials said in December that the company planned to build around 10 new Falcon first stages in 2020.

With its success in reusing Falcon 9 booster stages, the company has ramped up production of Falcon 9 second stages, which are new on each mission.

Elon Musk, SpaceX’s founder and CEO, has previously said he wants to launch, recover and re-launch Falcon 9 booster twice within a 24-hour period. But Musk has not recently repeated those comments, instead focusing on SpaceX’s larger, next-generation Starship launch vehicle to make the next leap in reusable rocket technology.

The Falcon 9 booster assigned to the Anasis 2 mission is designated B1058. The launch Monday will mark SpaceX’s 12th mission of the year, and the second to use the B1058 vehicle.

During its launch with astronauts May 30, the 156-foot-tall first stage detached from the Falcon 9’s upper stage and the Crew Dragon spacecraft around two-and-a-half minutes after liftoff. While the Crew Dragon accelerated into orbit, the booster fired engines in a series of maneuvers to land vertically on SpaceX’s drone ship parked in the Atlantic Ocean less than 10 minutes into the mission.

The drone ship returned to Florida’s Space Coast with the booster on its deck June 2, and SpaceX took the rocket back to a refurbishment facility at Cape Canaveral for inspections and preparations for its next mission.

SpaceX plans to recover the booster again after Monday’s launch.

The company’s drone ship “Just Read The Instructions” is in position around 400 miles (645 kilometers) east of Cape Canaveral, and two vessels have been dispatched into the Atlantic Ocean to retrieve the Falcon 9’s two-piece payload fairing.

The Anasis 2 satellite is prepared for shipment to Cape Canaveral from Airbus’s facility in Toulouse, France. Credit: Airbus Defense and Space

The Anasis 2 spacecraft awaiting launch Monday was manufactured by Airbus Defense and Space in Toulouse, France, and transported to Cape Canaveral last month on an Antonov An-124 cargo plane. Based on Airbus’s Eurostar E3000 satellite design, Anasis 2 “will provide secured communications over wide coverage,” Airbus said in a statement.

The spacecraft will launch into an elliptical, egg-shaped transfer orbit stretching tens of thousands of miles above Earth. The satellite’s on-board propulsion system will circularize its orbit at an altitude of more than 22,000 miles (nearly 36,000 kilometers) over the equator to reach a geostationary position, where Anasis 2 will remain over a fixed geographic location, circling the planet at the same rate as Earth’s rotation.

South Korea purchased the satellite — formerly known as KMilSatCom 1 — through an arrangement to offset South Korea’s purchase of F-35A fighter jets from Lockheed Martin. Lockheed Martin ultimately subcontracted the satellite manufacturing deal to Airbus.

Before Anasis 2, South Korea’s military has relied on international and civilian-owned satellites for communications.

Further details about the Anasis 2 satellite are shrouded in secrecy at the wishes of the the spacecraft’s owner — the South Korean government.

Citing a request from its customer, SpaceX said Saturday that its launch webcast for the Anasis 2 launch will end after landing of the Falcon 9’s first stage booster, expected around eight-and-a-half minutes after liftoff. At that time, Anasis 2 and the Falcon 9’s upper stage should be in a low-altitude parking orbit, coasting until restart of the second stage’s Merlin engine at T+plus 26 minutes, 32 seconds.

After a 56-second second stage burn to send Anasis 2 into a higher orbit, the spacecraft will separate from the Falcon 9 rocket at T+plus 32 minutes, 29 seconds.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace Airbus Defense and Space Anasis Anasis 2 astronomy BlackSky BlackSky Global 7 BlackSky Global 8 Broadband Commercial Space Complex 40 Earth observation Eurostar E3000 falcon 9 kennedy space center Launch Launch Pad 39A Military Space Mission Reports News South Korea spacex starlink Starlink 9 Static Fire Telecom X Sidebar

Falcon 9 launch of South Korean military satellite postponed

EDITOR’S NOTE: Updated at 2:15 p.m. EDT (1815 GMT) with SpaceX statement.

The Anasis 2 satellite is prepared for shipment to Cape Canaveral from Airbus’s facility in Toulouse, France. Credit: Airbus Defense and Space

The planned launch of a SpaceX Falcon 9 rocket Tuesday from Cape Canaveral of a South Korean military communications satellite has been delayed in order to address an issue on the launcher’s second stage, and potentially replace the hardware if necessary, officials said Monday.

“Standing down from tomorrow’s launch of Anasis 2 to take a closer look at the second stage, (and) swap hardware if needed,” SpaceX tweeted Monday. “Will announce new target launch date once confirmed on the range.”

It’s the second SpaceX mission to be postponed indefinitely in recent days as the company tries to cut turnaround times for reused rockets and produce new upper stages at a rapid rate to to meet a fast-paced launch schedule in the coming weeks.

SpaceX on Saturday test-fired the Falcon 9 rocket assigned to launch South Korea’s Anasis 2 communications satellite, and the company confirmed the mission was on track for liftoff Tuesday from pad 40 at Cape Canaveral Air Force Station. The launch window Tuesday was to open at 5 p.m. EDT (2100 GMT) and close at 8:55 p.m. EDT (0055 GMT).

But sources said Monday morning that the mission would be delayed, and SpaceX confirmed the delay in a tweet Monday afternoon.

And the Eastern Range, which oversees launch operations from Cape Canaveral, on Monday canceled launch hazard area notices for offshore airline and marine traffic that were associated with Tuesday’s launch opportunity.

The Anasis 2 spacecraft was manufactured by Airbus Defense and Space in Toulouse, France, and transported to Cape Canaveral last month on an Antonov An-124 cargo plane. Based on Airbus’s Eurostar E3000 satellite design, Anasis 2 “will provide secured communications over wide coverage,” Airbus said in a statement.

The launch of Anasis 2 is one of five missions SpaceX has planned through early August. A Falcon 9 launch from pad 39A at NASA’s Kennedy Space Center, a few miles north of pad 40, was to take off Saturday with a cluster of commercial satellites for SpaceX’s Starlink broadband fleet and BlackSky’s Earth-imaging constellation, but SpaceX called off the countdown “to allow more time for checkouts.”

The Falcon 9 launch with the Starlink and BlackSky satellites was initially targeted for launch June 26, but SpaceX scrubbed the launch attempt that day and was similarly vague about the reason, again citing the need for “additional time for pre-launch checkouts.”

A Falcon 9 rocket — without its payload fairing — fired up on Cape Canaveral’s Complex 40 launch Saturday for a pre-flight test-firing. Credit: William Harwood/CBS News

Two more SpaceX missions were slated to launch later in July from launch pads on Florida’s Space Coast.

Argentina’s SAOCOM 1B radar observation satellite was scheduled for liftoff as soon as July 25 on a Falcon 9 rocket, and another batch of Starlink satellites — flying in tandem with three Earth-observing satellites from Planet — were expected to launch around the end of July.

Another Starlink launch on a Falcon 9 was planned in early August. Schedules for subsequent Starlink missions have not been announced, but SpaceX is booked to launch the next Crew Dragon spacecraft with astronauts to the International Space Station and a GPS navigation satellite as soon as September.

The launch dates for those missions could be delayed as a ripple effect from the back-to-back postponements of the Starlink/BlackSky mission and the Anasis 2 flight.

The Anasis 2 mission will use a Falcon 9 first stage that previously flew May 30 to carry aloft NASA astronauts Doug Hurley and Bob Behnken on SpaceX’s Crew Dragon spacecraft. The booster, designated B1058, landed on SpaceX’s drone ship “Of Course I Still Love You” in the Atlantic Ocean, and then returned to Port Canaveral for refurbishment ahead of its second flight.

In order to achieve the rapid-fire launch cadence planned in the coming weeks, SpaceX is aiming to cut its turnaround time for reused rockets. The shortest span between launches of the same Falcon 9 booster to date has been 62 days, which SpaceX achieved with a Feb. 17 mission.

If the Anasis 2 launch had gone ahead Tuesday, the booster for that mission would have launched on its second flight just 45 days after its first flight May 30.

Elon Musk, SpaceX’s founder and CEO, has previously said he wants to launch, recover and re-launch Falcon 9 booster twice within a 24-hour period. But Musk has not recently repeated those comments, instead focusing on SpaceX’s larger, next-generation Starship launch vehicle to make the next leap in reusable rocket technology.

The Falcon 9 booster from the Crew Dragon Demo-2 launch will be reused for the Anasis 2 mission. Credit: Stephen Clark / Spaceflight Now

SpaceX currently has five Falcon 9 boosters in its inventory, and the company has flown two brand new first stages in its 11 missions so far this year. At least two more new Falcon 9 first stages are scheduled to enter service in the coming months, with SpaceX’s next launch of astronauts and the next launch of a U.S. military GPS navigation satellite, both currently planned no earlier than September.

A Falcon Heavy launch planned in late 2020 with a clandestine U.S. military payload will fly with three Falcon rocket boosters, all brand new. SpaceX officials said in December that the company planned to build around 10 new Falcon first stages in 2020.

With its success in reusing Falcon 9 booster stages, the company haas ramped up production of Falcon 9 second stages, which are new on each mission.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.