Categories
aerospace astronomy elon musk News spacex Starship Super Heavy Top Story

Elon Musk reveals the heart of SpaceX’s Starship Super Heavy booster

CEO Elon Musk has revealed the first glimpse of the most complex, important, and unproven part of Starship’s record-breaking Super Heavy booster.

Known as the engine section, the aft end of Super Heavy is likely where the fate of early booster prototypes will lie. For the most part, Super Heavy is just a colossal duo of steel propellant tanks that is – to an extent – even simpler than its smaller Starship upper stage, which needs two types of Raptor engines, flaps, a bevy of maneuvering thrusters, and more. However, at the booster’s base, SpaceX must design, fabricate, and assemble a nightmarishly crowded and complex mechanical structure capable of mounting, fueling, and powering anywhere from 29 to 33 Raptor engines.

Simultaneously, that structure and all associated plumbing must withstand the force and pressure of more than 2000 metric tons of cryogenic liquid oxygen and the 7500 tons (16.5 million lbf) of thrust those Raptors can generate. That’s just the bare minimum, though.

Beyond the extraordinary mechanical stress it must withstand, Super Heavy’s thrust section also needs to be able to survive the hellish, violent environment created by almost three dozen powerful rocket engines on one side while the structure is effectively half-submerged in a cryogenic fluid, subjecting the puck and dome to brutal thermal conditions. Last but certainly not least, the exterior of Super Heavy’s thrust structure must be able to survive the mechanical and thermal hell of hypersonic atmospheric reentry with zero cushioning of the blow.

The forces involved are difficult to imagine. At full thrust, Super Heavy Booster 4’s 29 Raptor engines (eventually expanding to 33 on future cores) will likely produce more than 5500 metric tons (12.1 million lbf) of thrust, making it both the largest and most powerful rocket booster ever built or tested. At full thrust, those 29 Raptors will consume more than 17 metric tons (~38,000 lb) of cryogenic liquid methane and oxygen – equivalent to around ten Tesla Model 3s worth of propellant – every single second.

Including smaller secondary runs for each Raptor engine, Super Heavy’s engine section will likely contain miles of plumbing for highly flammable, explosive, and high-pressure liquid and gaseous methane and oxygen. All 29 Raptors also need to be connected to Super Heavy’s power supplies and avionics systems, demanding still more miles of wiring.

Ultimately, Musk says that the next generation of Starship’s Raptor engine – “V2.0” – “is a major improvement in simplification,” presumably making life a bit easier for the engineers that have to design Super Heavy’s hellish engine section plumbing and the technicians that have to fabricate and assemble it. However, there’s just no getting around the fact that a single rocket booster with dozens of engines is going to have an extraordinarily complex thrust section. Only time will tell if SpaceX’s extensive launch vehicle expertise is up to the task.

The post Elon Musk reveals the heart of SpaceX’s Starship Super Heavy booster appeared first on TESLARATI.

Categories
aerospace astronomy News spacex Starship Super Heavy Top Story

SpaceX shifts South Texas focus to Starship’s orbital launch pad

Highlighted by a Wednesday jam-packed with important milestones, SpaceX appears to be shifting its focus in South Texas to the completion of Starship’s first orbital launch pad.

Boca Chica will be the first time in its history that SpaceX has faced the challenge of (or had the opportunity to) build an orbital launch complex from scratch after gaining a great deal of expertise modifying, reactivating, and rebuilding two existing pads in Florida and one in California. SpaceX’s Boca Chica facilities must also support what will be the most powerful rocket ever built (or tested) and a planned flight rate and turnaround capability that drastically exceeds anything the company (or anyone else, really) has attempted.

As a result, the site looks almost nothing like SpaceX’s other launch facilities. On top of the already significant hurdles faced, SpaceX is also attempting to complete its from-scratch facility in record time and work on Starship’s orbital launch site (OLS) really only began in earnest around the start of 2021. That aggressive work schedule has begun to clearly bear fruit in the last few months and arguably reached a bit of a local peak on Wednesday, July 28th.

A Tower Is Born

Kicking off the day after an aborted attempt on Tuesday, SpaceX began what would turn out to be an extremely busy Wednesday around 5am CDT (UTC-5) with the installation of the Starship launch tower’s ninth and final prefabricated section, effectively completing the structure’s skeleton. Unlike all other SpaceX pads, save for Pad 39A’s single-purpose Dragon and Crew Access Arm, Starship’s first orbital launch pad will lean heavily on a massive steel tower.

By all appearances, Starship’s launch tower will host an elevator-like carriage outfitted with several large arms on its exterior and will use those arms to stabilize, stack, fuel, and maybe even catch Starships and Super Heavy boosters. The tower will be integral to routine Starship launch operations, in other words.

With the installation of one last steel segment, that tower grew to a height of ~145m (~440 ft) and isn’t expected to get any taller after a 10m/30ft lightning rod is eventually added. SpaceX’s pad team can now begin the process of finalizing tower construction, ranging from adding cladding on its rectangular exterior and welding all nine steel sections together to filling its four legs with concrete.

Tank and Table

Just a few hours after the start of Tower Section #9 installation, a fleet of SpaceX’s self-propelled modular transporters (SPMTs) left the build site with two major pieces of orbital pad hardware in tow. For the first time in three months, one of those payloads was an OLS propellant storage tank built by SpaceX itself out of parts almost identical to those found on Starship. Since the first two ground support equipment (GSE) tanks were rapidly installed in April, activity on that front has been curiously stagnant.

Since modifications of those tanks began in-situ over the last month or so, the general consensus has been that a fairly minor design flaw or oversight was discovered well after production began, requiring a significant pause to rework and redesign the crucial pad components. In the meantime, work on contractor-built GSE tank shells meant to eventually insulate SpaceX’s thin cryogenic storage tanks continued unabated and one water tank and six shells have already been more or less completed. With any luck, GSE tank #5’s delivery to the OLS means that SpaceX has removed the roadblock(s) and is ready to move into plumbing and tank farm activation.

Simultaneously, a far more significant part known as the Starship ‘launch table’ also left SpaceX’s Boca Chica build site after nearly six months of around-the-clock assembly and outfitting. Designed to secure, fuel, and launch orbital Starships, the launch table has to be able to withstand the ~5000 metric ton (~11 million lb) weight of a fully-fueled Starship, hold Super Heavy in place during static fires and prelaunch ignitions that could produce ~7500 metric tons of thrust, and survive the unspeakable fury of 33 Raptor engines operating simultaneously.

Unlike all other major orbital Starship launch pad parts, the custom launch mount and table’s successful and near-total completion is an absolute necessity for any kind of orbital test flight or full-up Super Heavy static fire. Only part of the tank farm is truly necessary and the vast majority of the tower’s intended tasks can be completed with workarounds if neither are fully ready. Without the launch mount, however, testing much beyond what SpaceX has already accomplished is mostly impossible in the near term.

This table will eventually be installed on a tall, six-legged launch mount. (NASASpaceflight – bocachicagal)

Raptor Invasion

Finally, while less pressing, SpaceX also accepted delivery of four Raptor engines on top of three more that were delivered to Boca Chica on Tuesday. According to CEO Elon Musk, Starship’s first orbital test flight(s) will happen with a full complement of engines installed, meaning that SpaceX will need to build, qualify, and ship at least 35 new Raptors for a single flight.

SpaceX recently completed assembly of the 100th full-scale Raptor engine at its Hawthorne factory and HQ – an encouraging sign that the engines needed for Starship’s orbital launch debut will be ready for flight sooner than later.

The post SpaceX shifts South Texas focus to Starship’s orbital launch pad appeared first on TESLARATI.

Categories
aerospace astronomy News spacex Starship Super Heavy Top Story

SpaceX is almost ready to start turning Starship’s launch tower into ‘Mechazilla’

After a burst of activity and custom part deliveries, SpaceX appears to be almost ready to start turning Starship’s vast launch tower into what CEO Elon Musk has described as a “Mechazilla.”

Over the last few weeks, a number of new components have begun to quickly take shape, offering the first real glimpse of what SpaceX’s latest (hopeful) innovation might look like and how it could function. Earlier this year, Musk revealed plans to forgo landing legs entirely on earthbound Super Heavy boosters – and, potentially, Starships – by using a giant tower with arms to quite literally catch the rockets out of the air.

Those unintuitive plans have triggered wild speculation as the aerospace fans that follow SpaceX closely attempted to imagine what such a solution might look like – often engaging in a sort of vague back-and-forth with Musk himself as the CEO occasionally replied to fan-made depictions and renders.

Months after the reveal, though, parts of that tower’s rocket-manipulation mechanisms have begun to arrive on a near-constant stream of flatbed trucks and something is being assembled on a concrete pad previously used as a Starship landing zone. Two distinct structures are in work at the LZ: one a large framework assembled out of banana yellow metal tubes and the other a (for now) flatter black structure being assembled out of prefabricated components reminiscent of crane parts and trusses.

Now standing some 135m (~440 ft) tall, SpaceX’s Starship ‘launch tower’ has also been assembled from 9 different segments with what looks like six vertical rails running most of the length of three of its four rectangular legs. Since they were first spotted months ago, it’s long been assumed that those tracks will support some kind of elevator-like carriage meant to cling to the tower’s exterior. That carriage would then be outfitted with at least three (and probably five or more) large arms capable of catching, stabilizing, and fueling Starship.

Over the last week or so, SpaceX has also been hard at work completing the ninth and final section – believed to be the roof – of the launch tower. In the last few days, that four-legged tower section has been outfitted with an interesting appendage that itself was then fitted with several massive sheaves (i.e. pulleys). That hardware will likely become part of a high-power pulley system that will pull the arm carriage up and down the tower, allowing it to grab, lift, and catch Starships and Super Heavy boosters.

By all appearances, SpaceX is preparing to install the launch tower’s last prefabricated section, likely raising the tower to its final ~145m (~475 ft) height. It’s possible that a crane of some kind will be permanently installed on top of the tower but it currently looks like SpaceX intends to rely exclusively on the tower’s arms to install, stack, stabilize, fuel, and (maybe) catch Starship and Super Heavy.

Likely tower arm parts. (NASASpaceflight – bocachicagal)
The framework of one of several tower arms. (NASASpaceflight – bocachicagal)
Tower section #9. (NASASpaceflight – bocachicagal)
(NASASpaceflight – bocachicagal)

The post SpaceX is almost ready to start turning Starship’s launch tower into ‘Mechazilla’ appeared first on TESLARATI.

Categories
aerospace astronomy elon musk News spacex Super Heavy

SpaceX fires up world’s largest rocket booster on the first try

CEO Elon Musk says that SpaceX has successfully fired up Super Heavy – the largest rocket booster in the world – on the first try, potentially opening the door for a significantly more ambitious ‘static fire.’

Known as Booster 3 (B3), SpaceX completed Starship’s first functional Super Heavy prototype around July 1st and rapidly rolled the rocket out and installed it on a customized mount previously used for testing and launching Starship prototypes. After a bit less than two more weeks spent finishing up Booster 3’s avionics and plumbing and installing one Raptor engine, Super Heavy sailed through its first cryogenic proof test attempt on July 12th.

Rather than flammable liquid methane and oxygen propellant, Super Heavy was loaded with liquid nitrogen – providing roughly the same extremely cold temperature and mass without risking a massive explosion. In the week after that success, technicians rapidly installed two more Raptor engines and completed final closeout work on the building-sized rocket. On July 19th, Super Heavy B3 came alive for the second time.

After a delay to this week, SpaceX closed the road, cleared the launch pad, and began fueling Super Heavy for the first time ever around 6:20 pm CDT (UTC-5) – six hours into Monday’s ten-hour window. Almost exactly mirroring a routine Starship wet dress rehearsal or static fire, the pad and rocket followed a well-documented choreography of tank farm activity, vents, and frost formation, culminating in Booster 3 successfully igniting three Raptor engines around 7:05 pm.

Unlike virtually all Starship prototypes ever tested, including the first fully-assembled ships’ first multi-Raptor static fires, Super Heavy Booster 3 – the first functional prototype of its kind – completed its first static fire ever on the first try. In the history of Starship testing, initial prototypes have never smoothly sailed through cryogenic proof or static fire tests on the first attempt. Almost without fail, minor to major issues have arisen either before or during initial test attempts as SpaceX worked through the basics of operating Starship tests.

Instead, despite the fact that B3 is quite literally the largest rocket booster prototype ever built in the history of spaceflight and the first of its kind, Super Heavy appeared to run into no obvious issues at all after it was properly prepared for its first two major tests. Put simply, Super Heavy’s smooth testing makes it abundantly clear that SpaceX’s Starship launch vehicle design, production, and operations are rapidly maturing as the company speeds towards its first orbital launch attempt.

Meanwhile, Elon Musk says that SpaceX “might try a 9 engine firing on Booster 3” depending on how Booster 4 production progresses – presumably over the next week or two. By all appearances, SpaceX began stacking Super Heavy B4 – the booster tasked with supporting Starship’s first orbital launch attempt around July 16th. Based on B3 assembly, Booster 4 could be complete by mid to late August.

With nine Raptors installed, Super Heavy B3 could produce up to 1800 tons (~4 million lbf) of thrust during a brief static fire – just ~20% less than Falcon Heavy. Stay tuned for updates on Booster 3 and Booster 4!

The post SpaceX fires up world’s largest rocket booster on the first try appeared first on TESLARATI.

Categories
aerospace astronomy News spacex Starship Super Heavy Top Story

SpaceX begins assembling first orbital Starship and Super Heavy booster

SpaceX has begun rapidly assembling the first orbital Starship prototype and the Super Heavy booster set to launch it isn’t far behind.

SpaceX’s Boca Chica, Texas rocket factory seemingly turned a corner in early July as sections of Starship 20 (S20) began to pop up around the site. Though parts labeled Starship “SN20” first appeared as far back as March 2021, the only unequivocal work on SpaceX’s first purportedly orbital-class Starship began in mid-June with the integration of the first engine section with mounts for six – not three – Raptors.

However, in line with SpaceX’s strict focus on maximizing the speed of Starship development and shortening the path to orbit, the company has frequently built Starship hardware before firmly assigning that hardware to any given ship, booster, or tank. In other words, until SpaceX actually begins stacking multiple completed rocket sections, there’s always a degree of uncertainty about the fate of any given ring, dome, or tank barrel. With Starship S20, that process began earlier this month and Super Heavy Booster 4 is likely to follow suit within the next few days – if it hasn’t already.

Since SpaceX unceremoniously rolled Starship prototype SN16 to an empty lot in mid-May, the company didn’t stack a single Starship part until the first week of July – unusual after a frenetic seven months spent building, qualifying, and launching Starships SN8, SN9, SN10, SN11, and SN15 and testing test tanks SN7.2 and BN2.1. Around the same time as Starship SN15 became the first prototype to successfully complete a high-altitude test flight and land in one piece, news broke that SpaceX was striving to perform Starship’s first orbital test flight with Ship 20 (S20) and Booster 3 (B3) as early as July.

Eventually, Booster 3’s orbital launch assignment shifted to Booster 4 as it became clear that the former prototype wasn’t meant to fly, but Starship S20 remained. More likely than not, the almost two-month gap between Starship SN16’s instant retirement and the start of the next flightworthy prototype’s assembly can be explained by the significant changes, upgrades, and undecided design decisions required to jump to S20.

Beyond the need for a thrust structure capable of supporting three sea-level Raptors and three vacuum-optimized engines, Starship S20 would need a full heat shield with thousands of tiles; orbital-class communications and avionics; and the general polished fit and finish required for an orbital launch attempt to have a good shot at producing the data needed for it to be valuable. SpaceX appeared to conclude that those stars were aligned in early July.

Starship S20 entered the assembly or ‘stacking’ phase on July 3rd. (NASASpaceflight – bocachicagal)
S20’s forward dome section was likely installed on July 13th. (NASASpaceflight – bocachicagal)
Later the same day, S20’s aft engine section and leg skirt were mated. (NASASpaceflight – bocachicagal)

Two weeks after the first stack, Starship S20 is already approximately half-assembled and the last section of the vehicle’s tanks is almost ready for installation. What could be Starship S20’s nosecone is also in the late stages of assembly, though SpaceX has yet to even attempt to fully cover a nose in heat shield tiles and getting that process right could take an attempt or two.

Booster 4 rings are pictured here on the bottom and right. (NASASpaceflight – bocachicagal)

Meanwhile, as evidenced by the booster common dome section hanging in midair in the image above, the assembly of Super Heavy booster 4 (B4) – the same booster tasked with supporting Starship’s first orbital launch attempt – may have begun on July 15th. If the Super Heavy common dome assembly was simply being moved relocated, a separate four-ring section has been staged outside of the high bay to kick off Booster 4 stacking within the next few days.

All told, it’s not inconceivable that both of the first orbital-class Starship and Super Heavy prototypes will be fully assembled and ready for testing – integrated or otherwise – sometime in August.

The post SpaceX begins assembling first orbital Starship and Super Heavy booster appeared first on TESLARATI.

Categories
aerospace astronomy News Raptor spacex Starship Super Heavy Top Story

SpaceX schedules first Super Heavy static fire after installing three Raptors

After an apparent false start on Wednesday morning, SpaceX has distributed a second safety alert among Boca Chica residents in anticipation of the first static fire of a Super Heavy booster as early as July 15th.

Delineated by highway and beach closures filed in advance with Cameron County, Thursday’s window stretches from 12pm to 8pm or 10pm CDT (UTC-5), giving SpaceX 8-10 hours to put the first functional Super Heavy booster prototype through its most challenging tests yet.

Known as a static fire, what is a mostly routine test for operational rockets is a bit more of a challenge for a first-of-its-kind prototype. Notably, on July 12th, Super Heavy Booster 3 survived its first ‘cryogenic proof’ pressure test, withstanding the thermal and mechanical stresses created when the rocket was filled with a few hundreds tons of liquid nitrogen and the expanding gases created as that cryogenic fluid then warmed and boiled. However, Booster 3 has yet to perform any kind of test involving the combustible, explosive liquid oxygen and methane propellant needed to fuel Raptor engines.

By all appearances, SpaceX aims to roll Super Heavy’s first wet dress rehearsal (WDR; like a ‘cryo proof’ with real propellant) and static fire into one busy day of testing. That combined WDR and static fire will likely be the first time ever that a launch vehicle as large as Super Heavy has attempted to pressurize its tanks autogenously, referring to the process of using a rocket’s own fuel and oxidizer to generate ullage gas. Starship prototypes notoriously struggled with their smaller autogenous pressurization systems – and jerry-rigged alternatives – on several occasions.

Super Heavy booster prototype B3 survived its first major test on Monday, paving the way for a possible static fire later this week. (NASASpaceflight.com)
SpaceX has installed three Raptors on Super Heavy Booster 3 in the days shortly before and after its cryo proof. (NASASpaceflight – bocachicagal)

In other words, even an ignition-free wet dress rehearsal test completed with autogenous pressurization would be a major success and hurdle surmounted for Super Heavy. If SpaceX manages to perform the first booster WDR and static fire on the same day, it would indicate that the company has extreme confidence in Super Heavy.

Despite an aborted attempt on July 11th, SpaceX outfitted the rocket with one Raptor on Saturday, July 10th and installed another two engines in quick succession on Tuesday, July 13th – likely in an odd triangular configuration on the booster’s central nine-engine ‘thrust puck.’ Why that particular configuration was chosen instead of something more symmetric is unclear but it does decrease the odds of a multi-engine test on Super Heavy’s first static fire without a clear reason to assume that testing such an odd engine placement would provide some valuable insight.

In comparison, two engines on opposite sides of Super Heavy’s inner ‘ring’ or three engines forming a line across that ring are two configurations that boosters are very likely to use during landing burns. Regardless, according to Next Spaceflight’s Michael Baylor, SpaceX may start Super Heavy B3’s static fire test campaign with just one engine, so it’s not impossible that the current configuration is just a part of the incomplete process of installing five or more engines.

As with all Starship development, it’s equally likely that Super Heavy’s first wet dress rehearsal and static fire test attempts will slip late into the window, to Friday, or even to the week of July 19th. Stay tuned for updates!

The post SpaceX schedules first Super Heavy static fire after installing three Raptors appeared first on TESLARATI.

Categories
aerospace astronomy News spacex Starship Super Heavy Top Story

SpaceX Super Heavy booster survives first major test

A SpaceX Super Heavy booster prototype has survived its first major test seemingly without issue, potentially opening the door for a static fire test with several Raptor engines as early as this week.

Not long after the latest line of propellant storage implements was transported from SpaceX’s Boca Chica, Texas factory to Starship’s first orbital launch pad, the company officially closed the one highway to the pad and nearby beach. By ~4:30pm CDT (UTC-5), the first major test of an integrated Starship booster was under way and clouds of cryogenic vapors were pouring off of Super Heavy B3’s thrust (aft) dome as the humid air came in contact with steel cooled to around –330°F (–200°C).

While technically known as a cryogenic proof test, Booster 3’s first major challenge looked more like a basic pressure test. Curiously, only small amount of frost – the telltale sign of a ‘cryo proof’ – formed on the outside of Super Heavy’s ~65m (~215 ft) tall propellant tanks in two hours of activity, indicating that SpaceX likely chose a more cautious approach to Booster 3’s first cryo proof.

In short, Booster 3 was likely filled with a few hundred tons of liquid nitrogen relative to the more than 3000 tons its tanks could easily hold and the fraction of that total capacity SpaceX’s suborbital launch site can actually supply. Teams have been working around the clock for months to outfit Starship’s first orbital launch site with enough propellant storage for at least one or two back to back orbital launches – on the order of 10,000 tons (~22M lb) – but the nascent tank farm is far from even partially operational. That’s left SpaceX with its ground testing and suborbital Starship launch facilities, which appear to be able to store around 1200 tons of propellant.

Assuming the suborbital pad’s main liquid oxygen and methane tanks can also both store and distribute liquid nitrogen, which isn’t guaranteed, SpaceX thus has the ability to fill approximately 30-40% of Super Heavy B3’s usable volume. Frost lines aren’t always a guaranteed sign of fill level but if they’re close, SpaceX likely filled Booster 3’s tanks just 5-10% of the way during the rocket’s first cryoproof.

Based on loud, visible venting that occurred throughout the process, it’s likely that Super Heavy’s first cryo proof was more focused on pressure testing with just a small taste of the true thermal shock, loads, and general mechanical stress Starship boosters will have to withstand when loaded with thousands of tons of propellant and generating thousands of tons of thrust with dozens of Raptor engines.

Following July 12th’s test, Super Heavy B3’s next steps could either be one or several additional cryo proofs or a static fire test with an unknown number of Raptor engines installed. The booster completed Monday’s testing with one Raptor installed, while the most engines ever tested simultaneously is three. SpaceX has yet to update backup test windows scheduled from noon to 10pm CDT on July 13th, 14th, and 15th, any of which could be used for additional cryo proof or static fire testing.

The post SpaceX Super Heavy booster survives first major test appeared first on TESLARATI.

Categories
aerospace astronomy News Raptor spacex Starship Super Heavy Top Story

SpaceX begins installing Raptor engines on first Super Heavy booster

SpaceX has installed a Raptor engine on a Super Heavy booster prototype for the first time, defying expectations and setting the rocket up for two major tests as early as this week.

On Thursday, July 8th, SpaceX briefly filled Super Heavy Booster 3’s (B3) propellant tanks with benign nitrogen gas. The vehicle seemingly came to life for the first time that morning when it was spotted using its tank vents – a generally incontrovertible sign that the complex mechanical system that is a rocket is functional. Later that day, the public highway and beach adjacent to SpaceX’s launch site were briefly closed for what was expected to be an ambient pressure and/or cryogenic proof test.

Booster 3 never got to the cryogenic proof test – easily confirmed thanks to the frost that forms on most rockets’ exteriors as main tanks are filled with extremely cold liquid nitrogen. No such frost formed, no major venting occurred, and the road was only closed for the first two hours of a six-hour test window.

According to Next Spaceflight’s Michael Baylor, SpaceX did complete a “brief ambient proof” during that relatively short closure, though very little activity was visible during the test. Friday’s 14-hour test window was canceled the next morning, leaving SpaceX the rest of the weekend to prepare the first functional Super Heavy booster for its first truly challenging test – cryo proof.

Instead, late on Saturday, July 10th, SpaceX rolled Raptor 57 (R57) from build site to launch pad and began installing the engine on Booster 3 just a few hours later. Prior to Raptor 57’s installation, most prominent (albeit unofficial) voices in the SpaceX fan community anticipated no more than cryogenic proof testing for Booster 3 – no static fires, in other words.

However, it was fairly apparent that Super Heavy Booster 3 and the modified suborbital launch mount it was installed on were both outfitted for testing more complex than a cryo proof alone. Notably, B3 rolled to the pad with multiple labeled methane pressure vessels (COPVs), extensive plumbing, and autogenous pressurization control panels installed – all of which continued to be actively worked on after the booster was installed at the launch site.

B3 features a myriad of plumbing, virtually none of which would be useful for cryo proof testing with liquid nitrogen. (NASASpaceflight – bocachicagal)

While it’s technically not impossible to build a ground testing Starship prototype that’s capable of a wide variety of tests but never actually used to its full extent, doing so would be well out of character for SpaceX and make little sense in general. As such, it’s not a major surprise that SpaceX has now begun to install Raptor engines on Super Heavy Booster 3. What is surprising is that SpaceX is installing Raptor engines on a first-of-its-kind Super Heavy prototype before any fully integrated booster has completed cryogenic testing.

Based on Starship’s ~18-month test history, there is a real possibility Super Heavy B3 will fail during cryogenic proof testing. Even accepting that SpaceX’s testing processes and expertise have matured dramatically after dozens of Starship tests on the ground and in flight, the chance remains. In other words, SpaceX’s decision to begin installing Raptors on Super Heavy before ensuring structural and mechanical integrity implies some combination of unusual confidence in a prototype as unproven as Booster 3 and a distinct lack of concern at the prospect of losing at least two Raptor engines in a hypothetical test failure.

Knowing SpaceX and CEO Elon Musk’s goals for Raptor, the latter implication isn’t much of a surprise but it’s always interesting to have direct visual evidence that Raptor is, in fact, so cheap to build and easy to install that the minor effort and few days of possible delays required to reduce the risk of losing multiple engines just aren’t worth it.

As of July 11th, a second Raptor engine is staged and waiting for installation beside Booster 3. (NASASpaceflight – bocachicagal)

As such, it’s now clear that Super Heavy Booster 3 will have at least one or two Raptor engines installed during its very first cryogenic proof test – currently no earlier than 12pm to 8pm CDT (UTC-5) on Monday, July 12th. Assuming SpaceX’s confidence is well-placed and Booster 3 passes its first cryogenic tests without issue, the real question now is how many Raptors will be installed and ignited during Super Heavy’s first static fire test?

The post SpaceX begins installing Raptor engines on first Super Heavy booster appeared first on TESLARATI.

Categories
aerospace astronomy News spacex Starship Super Heavy Top Story

SpaceX Starship booster weathers thunderstorm ahead of first ‘cryo proof’

Meshing with road and beach closures requested earlier this week, Next Spaceflight reports that a SpaceX Super Heavy booster is scheduled to attempt a ‘cryo proof’ test for the first time as early as Thursday, July 8th.

Known as Booster 3 (B3), SpaceX rolled the first functional Super Heavy prototype – the largest rocket booster ever completed – from the factory to the launch pad on July 1st. One week later, SpaceX appears to be on track to kick off Super Heavy’s first fully-integrated qualification testing, building off of an apparently successful campaign of pressure testing with booster test tank BN2.1. After completing several tests, BN2.1 was rolled back to a scrapyard near SpaceX’s Boca Chica factory, while part of the custom-built stand used for the campaign was then reinstalled on one of the two ‘suborbital mounts’ used for Starship testing over the last year.

Mere days after Mount A’s modifications were completed, Super Heavy Booster 3 was transported to the pad and installed atop it. For whatever reason, SpaceX technicians and engineers spent the next week scouring the rocket’s exterior and interior with the help of an army of boom lifts, turning the basic structure into a functional pressure vessel with all necessary power, telemetry, and plumbing.

A few days before the storm. (NASASpaceflight – bocachicagal)

99% of that closeout work could have seemingly been done under the cover of SpaceX’s high bay, where Booster 3 was assembled out of dozens of steel rings and domes, but the work appears to have been completed regardless. Workers had to contend with routine South Texas downpours and thunderstorms on Tuesday and Wednesday but were otherwise subjected to fairly mundane winds and weather.

Conditions were most dramatic on Tuesday, with torrential rain only interrupted by the occasional lightning bolt – though Booster 3 and the orbital launch pad’s skyscraper-sized launch tower appeared to make it through the day strike-free.

SpaceX’s orbital Starship launch tower (left) and Booster 3 (right) narrowly missed at least one large lightning strike. (NASASpaceflight.com)

Now seemingly fully outfitted with all necessary avionics, wiring, and plumbing, Booster 3’s next major objectives will be ambient and cryogenic proof tests, referring to the process of verifying the structural integrity of the rocket first with benign nitrogen gas and later with supercool liquid nitrogen. SpaceX has performed at least a dozen or two ‘cryo proofs’ over the last 18 months and, at this point, qualification testing is fairly routine.

However, Super Heavy B3 is the largest rocket booster ever built and testing such a massive rocket will necessarily force SpaceX to tread some new ground. In fact, it’s not actually clear how exactly SpaceX will perform Booster 3’s first cryo proof given that the suborbital launch complex hosting it has nowhere near enough cryogenic storage capacity to fully fill Super Heavy with more than 3000 tons (~6.6 million lb) of liquid nitrogen.

As always, testing massive, brand-new rockets is no simple feat, so delays are possible – if not outright likely. Regardless, Super Heavy B3’s first test window is scheduled from noon to 8pm CDT (UTC-5) on Thursday, July 8th, with two backups from 6am to 8pm on July 9th and 12pm to 8pm on July 12th. Stay tuned for updates on the first tests of a full-size Super Heavy booster!

Booster 3. (NASASpaceflight – bocachicagal)

The post SpaceX Starship booster weathers thunderstorm ahead of first ‘cryo proof’ appeared first on TESLARATI.

Categories
aerospace astronomy News spacex Starship Super Heavy Top Story

SpaceX rolls largest rocket booster ever built to the launch pad

Six weeks after assembly began, SpaceX has completed Starship’s first true Super Heavy booster prototype, rolled it out of its ‘high bay’ nest, and installed the building-sized rocket at the launch pad.

Standing some 65 meters (~215 ft) tall, Super Heavy Booster 3 (B3) is the same height as an entire two-stage Falcon rocket and Dragon spacecraft and is expected to singlehandedly weigh six times more than a fully-fueled Falcon 9 when loaded with liquid oxygen and methane propellant. Once Super Heavies are eventually outfitted with a full 32 Raptors, more engines than any other rocket in history, the booster will also produce more than twice the thrust of NASA’s Saturn V Moon rocket – still the most powerful vehicle ever flown.

Assembled out of 36 steel rings, three tank domes, and dozens of other major components, Super Heavy B3 borrows heavily from the Starship production apparatus SpaceX has built and refined over the last ~18 months. Boosters use the same welding and integration jigs, facilities, and strategies and are built out of the same steel rings, stringers, stiffeners, and dome ‘gores.’

In some ways, Super Heavy boosters are actually a good deal simpler than Starships, which require a custom nose cone, secondary ‘header’ tanks, extra plumbing, actuating flaps, a heat shield with thousands of tiles, and more. Boosters, by comparison, require no heat shield and only need two main tanks made out of identical steel rings. However, all three Super Heavy domes (forward, common, and thrust) are mostly custom or require major modifications on top of parts shared with Starship domes.

A panorama of Super Heavy Booster 3, now the largest rocket stage in the world. (Starship Gazer)

Speaking on June 30th, Elon Musk revealed that Booster 3 was “very hard to build” and would be exclusively used for ground tests, reiterating that Super Heavy B4 is currently the first booster scheduled to fly. Curiously, the SpaceX CEO also said that “much of [Super Heavy’s] design” would be changed between Booster 3 and Booster 4, raising questions about what the company hopes to gain from Booster 3 “ground tests.”

Regardless, those tests are now on track to begin as early as Monday, July 6th after SpaceX transported Super Heavy Booster 3 from the factory to the launch pad and rapidly installed the rocket on a test platform on July 1st. Following in the footsteps of Starship, Super Heavy’s first hurdle will likely be an ambient proof test, in which nitrogen gas is used to check for leaks and verify general structural integrity under pressure.

Once complete, Booster 3 will be put through a cryogenic proof test, effectively replacing gaseous nitrogen with its supercooled liquid equivalent to simulate the immense thermal and mechanical stress incurred by similarly cold liquid oxygen and methane propellant. How exactly that test will be done is unclear given that Super Heavy can feasibly hold more than 3100 tons of liquid nitrogen and nowhere near that much storage capacity has been installed. The most important goal of cryo proof testing is to demonstrate that Super Heavy is structurally sound with its tanks pressurized to nominal flight pressures – likely at least 7-8 bar (~100-120 psi).

If successful, there are two possible routes SpaceX could go: more cryogenic proof testing at higher (and thus potentially destructive) pressures or static fire testing with one or several Raptor engines installed. Given Musk’s statement that the first flightworthy Super Heavy booster would implement major design changes, it’s unclear if Booster 3 is of a high enough fidelity to warrant static fire testing or if SpaceX has effectively turned the Super Heavy prototype into a massive ‘test tank’ instead.

The post SpaceX rolls largest rocket booster ever built to the launch pad appeared first on TESLARATI.