Categories
aerospace astronomy Complex 40 Drone Ship falcon 9 Global Positioning System GPS GPS 3 GPS 3-3 L3 Harris Launch Lockheed Martin Military Space Mission Reports Navigation News Reusability Space and Missile Systems Center spacex US Space Force X Sidebar

Photos: Falcon 9 rocket launches from Florida with GPS navigation satellite

The first launch by SpaceX for the U.S. Space Force on June 30 carried the third in a new line of modernized GPS navigation satellites into orbit from Cape Canaveral.

The 9,505-pound (4,311-kilogram) GPS 3 SV03 spacecraft rode into orbit inside the payload shroud of a Falcon 9 rocket, on the way to replace an aging GPS satellite launched in May 2000.

These photos show the Falcon 9 rocket firing off pad 40 at Cape Canaveral Air Force Station at 4:10:46 p.m. EDT (2010:46 GMT). Nine Merlin 1D engines, burning a mixture of kerosene and liquid oxygen, powered the Falcon 9 into the sky with 1.7 million pounds of thrust.

The launch marked the 88th flight of a Falcon 9 rocket since SpaceX debuted its workhorse launch vehicle in June 2010. It was the 11th Falcon 9 flight so far in 2020.

Read our full story for details on the June 30 launch.

Credit: SpaceX
Credit: SpaceX
Credit: SpaceX
Credit: SpaceX
Credit: SpaceX
Credit: SpaceX
Credit: SpaceX
Credit: Lockheed Martin
Credit: SpaceX
Credit: Lockheed Martin
Credit: SpaceX
Credit: SpaceX

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace astronomy Complex 40 Drone Ship falcon 9 Global Positioning System GPS GPS 3 GPS 3-3 L3 Harris Launch Lockheed Martin Military Space Mission Reports Navigation News Reusability Space and Missile Systems Center spacex US Space Force X Home Page Highlight

SpaceX launches its first mission for the U.S. Space Force

A Falcon 9 rocket blasts off Tuesday from pad 40 at Cape Canaveral Air Force Station, Florida. Credit: SpaceX

A new GPS satellite rocketed into orbit from Cape Canaveral on top of a SpaceX Falcon 9 launcher Tuesday on the way to replace one of the more than 30 other spacecraft helping guide everything from military munitions to motorists.

The launch was the first by SpaceXs for the U.S. Space Force, which took over most Air Force-run space programs after its establishment as a new military service in December. The third in a new line of upgraded Global Positioning System navigation satellites flew aboard the Falcon 9 rocket, adding fresh capabilities to the GPS network while replacing an aging spacecraft launched more than 20 years ago.

“The GPS 3 program continues to build on its successes by delivering advanced capabilities for the United States Space Force, and maintaining the ‘gold standard’ for position, navigation and timing.” said Col. Edward Byrne, Medium Earth Orbit Space Systems Division chief at the Space and Missile Systems Center.

The third GPS 3-series satellite, designated GPS 3 SV03, took off at 4:10:46 p.m. EDT (2010:46 GMT) from pad 40 at Cape Canaveral Air Force Station in Florida.

Riding a 229-foot-tall (70-meter) Falcon 9 rocket, the 9,505-pound (4,311-kilogram) spacecraft launched on a trajectory toward the northeast from Cape Canaveral, flying roughly parallel to the U.S. East Coast.

Nearly 90 minutes after liftoff, the Falcon 9’s upper stage precisely released the GPS 3 SV03 satellite into an on-target transfer orbit ranging in altitude between around 250 miles (400 kilometers) and 12,550 miles (20,200 kilometers), with an inclination of 55 degrees to the equator.

The spot-on orbit puts the GPS 3 SV03 spacecraft in position to use its own propulsion system in the coming weeks to circularize its orbit at an altitude of 12,550 miles, where the satellite is set to enter the operational GPS constellation as early as August, military officials said.

The launch was originally scheduled for late April, but military officials delayed the flight two months to allow time for teams at a satellite operations center in Colorado to introduce and test new protocols to enable physical distancing between control consoles. Officials reduced the size of the crew inside the control center, and added partitions and procured personal protective equipment for satellite controllers to reduce risks amid the coronavirus pandemic, according to Byrne.

Manufactured by Lockheed Martin, the GPS 3 SV03 satellite is set to enter service in Plane E, Slot 4 of the GPS constellation. That position is currently occupied by a GPS satellite launched May 10, 2000, from Cape Canaveral on a Delta 2 rocket. Military officials did not say whether that satellite, which was originally designed for a 10-year mission, will be decommissioned or moved to another slot in the GPS network.

Lockheed Martin confirmed in a statement after Tuesday’s launch that the GPS 3 SV03 spacecraft was responding to commands from engineers at the company’s Launch and Checkout Center in Denver.

The GPS satellites are spread among six orbital planes, each with four primary spacecraft, plus spares. Byrne said Friday in a pre-launch teleconference with reporters that the GPS constellation currently consists of 31 satellites.

The GPS network provides positioning and timing services worldwide for military and civilian users, beaming signals relied upon by airliners, ATMs, drivers and smart bombs, among numerous other users.

“The Global Positioning System has become part of our critical national infrastructure, from transportation to financial markets to energy grids to the rideshare industry,” said Tonya Ladwig, acting vice president of Lockheed Martin’s navigation systems division. “It’s no longer a matter of did you use GPS today. It’s a matter of how many times did you actually use it.”

With an estimated 4 billion users, the GPS network reached full operational capability in 1995. The military has conducted a series of launches to replenish the GPS satellite fleet since then, using ULA’s Atlas and Delta rockets, and now SpaceX’s Falcon 9.

The GPS 3 satellites provide more accurate navigation signals and boasting longer design lifetimes of 15 years. The new GPS 3 satellites also broadcast e a new L1C civilian signal that is compatible with Europe’s Galileo network and Japan’s Quasi-Zenith Satellite System.

Military officials say the compatibility of GPS signals with satellite navigation networks operated by allies maximizes the accuracy of positioning and timing signals, helping ensure that users can fix their locations through more spacecraft in the sky at one time.

The U.S. military’s third GPS 3-series satellite, designated SV03, is prepared for encapsulation inside the payload fairing of its SpaceX-built Falcon 9 rocket. Credit: SpaceX

Like the previous line of Boeing-built GPS 2F satellites, all GPS 3-series spacecraft broadcast a dedicated L5 signal geared to support air navigation. The GPS 3 satellites also continue beaming an encrypted military-grade navigation signal known as M-code.

The M-code signal allows GPS satellites to broadcast higher-power, jam-resistant signals over specific regions, such as a military theater or battlefield. The capability provides U.S. and allied forces with more reliable navigation services, and could also allow the military to intentionally disrupt or jam civilian-grade GPS signals in a particular region, while the M-code signal remains unimpeded.

L3Harris Technologies builds the navigation payloads for the GPS 3 satellites.

The first two GPS 3-series satellites launched in December 2018 on a SpaceX Falcon 9 rocket and last August aboard a United Launch Alliance Delta 4 booster. Both were declared fully operational earlier this year.

Ladwig said the GPS 3 SV04 and SV05 spacecraft are complete and in storage awaiting launch, and the next three satellites are fully assembled and undergoing environmental testing. SV09 and SV10 are currently being assembled at Lockheed Martin’s GPS satellite factory near Denver.

Lockheed Martin is on contract with the Defense Department to build 10 GPS 3 satellites — two of which have launched — and up to 22 upgraded GPS 3F-series satellites.

The Space Force has reserved the next three GPS 3-series satellite launches with SpaceX. An SMC spokesperson said the GPS SV04 mission is set for launch no earlier than Sept. 30, followed by SV05 in January 2021.

Tuesday’s launch also marked the first time military officials allowed SpaceX to reserve enough propellant on the rocket to land the Falcon 9’s first stage booster after a launch of a high-priority national security payload.

The Falcon 9 booster touched down on SpaceX’s drone ship “Just Read The Instructions” positioned around 400 miles (630 kilometers) northeast of Cape Canaveral in the Atlantic Ocean.

The first stage fired its engines to guide itself toward the drone ship after separation from the Falcon 9’s upper stage around two-and-a-half minutes into the mission. Titanium grid fins helped stabilize the rocket during descent, and booster landed on the power of its center engine around eight-and-a-half minutes after launch.

It was a crucial recovery for SpaceX, which aims to reuse the booster on a future flight. The first stage used Tuesday was a brand new booster.

Mission planners modified the Falcon 9 launch profile to accommodate the booster landing.

The launch profile adjustment to make landing of the Falcon 9 booster possible ended up saving “several million dollars” for the military from the original SpaceX launch contract value of $96.5 million, according to Walter Lauderdale, mission director for the GPS SV03 launch from the Space Force’s Space and Missile Systems Center.

On SpaceX’s first launch of a GPS navigation satellite in December 2018, military officials required the launch company to devote all of the Falcon 9 rocket’s capacity to placing the spacecraft into orbit. That meant SpaceX could not install landing legs on the Falcon 9’s first stage or attempt recovery of the booster.

SpaceX lands, refurbishes and re-flies Falcon 9 first stages to reduce costs, and it is the only launch company that currently reuses rocket hardware.

SpaceX has recovered rockets on previous launches with military payloads, such as a Falcon Heavy mission last June, but those missions carried experimental technology demonstration and research satellites — not operational spacecraft like a GPS satellite.

On SpaceX’s first GPS launch in 2018, the military required the Falcon 9 rocket to place the spacecraft into an orbit with a higher perigee, or low point, of more than 740 miles, or about 1,200 kilometers. Teams also loaded extra fuel into the GPS spacecraft as an extra precaution.

It was the first high-priority national security payload to launch on a SpaceX rocket, and it was also the first satellite in a new design of GPS spacecraft.

“Simply put, there was insufficient performance given the mission trajectory and payload weight, combined with the uncertainties associated with this demanding mission,” Lauderdale said.

“Our evaluation of that mission’s performance, combined with additional work with SpaceX, reduced uncertainty in many areas,” Lauderdale said. “When we approached SpaceX to revise some spacecraft requirements for this mission … they responded with an opportunity to recover the booster in exchange for adding these requirements, as well as other considerations.”

Artist’s concept of a GPS 3 satellite in space. Credit: Lockheed Martin

Officials are now more comfortable with the performance of the Falcon 9 rocket and the new GPS 3-series satellite design. That allowed engineers to load less propellant into the third GPS 3 satellite.

Mission planners also changed the perigee of the spacecraft’s initial orbit after launch from around 740 miles to 250 miles, according to Byrne.

“All that required from us was to reassess our burn profile, so we made some slight modifications to that burn profile, but there’s been no mission impact associated with the booster recovery option,” Byrne said in a pre-launch conference call with reporters.

One change to the Falcon 9 rocket for the GPS SV03 mission was a gray band of thermal insulation on the launcher’s upper stage. The thermal layer was designed to help maintain kerosene fuel at proper temperatures during a nearly one-hour coast phase between the first and second burns of the upper stage’s Merlin engine, and then keep propellants stable during another coast phase of several hours before a third Merlin burn to deorbit the stage.

SpaceX has tested the thermal layer before, but it did not fly on the first GPS 3 launch in 2018. The company has experimented with long-duration coasts of the Falcon upper stage to gather data before the first dedicated launch of a national security payload on SpaceX’s triple-core Falcon Heavy rocket late this year.

Military engineers charged with overseeing the design and production of SpaceX rockets for national security missions assessed numerous configuration changes since the Falcon 9’s first launch of a GPS satellite in 2018.

“Since the GPS 3 launch in December 2018, we’ve worked with SpaceX to stay current on the configuration of the Falcon 9, evaluating 665 changes,” Lauderdale said. “This enabled us to maintain the vehicle technical baseline that is the foundation of our independent mission assurance.”

Space Force officials have not yet approved SpaceX to launch critical military satellites — a mission class known as National Security Space Launch payloads — using previously-flown boosters. SpaceX has re-launched Falcon boosters 37 times to date with a 100 percent success record.

Lauderdale said the SMC mission assurance team is becoming more familiar with how SpaceX refurbishes rockets in between flights.

“I can’t commit to when we’ll be ready,” he said Friday, referring to when the military could launch a national security payload on a reused Falcon 9 booster.

SpaceX is building an all-new Falcon Heavy rocket for a national security launch late this year, and the company is expected to use a brand new booster for the next GPS launch no earlier than Sept. 30.

The military is currently considering proposals from four companies — SpaceX, ULA, Blue Origin and Northrop Grumman — in the next round of launch service procurements. Lauderdale said the military will allow launch service providers who win the the so-called “Phase 2” contracts to bid reused rockets for national security space launches in an effort to reduce costs.

“As a program, we are open and ready and looking forward to whatever industry wants to make available to us, but predominately we’ve been looking at the Phase 2 competition as that opportunity,” Lauderdale said.

With the GPS launch behind them, SpaceX teams on Florida’s Space Coast will again turn their attention to launching a Falcon 9 rocket pad 39A at NASA’s Kennedy Space Center with the next batch of SpaceX’s Starlink Internet satellites.

That mission was supposed to launch Friday, June 26, but SpaceX scrubbed the launch attempt and postponed the flight until after the GPS launch from nearby pad 40. A launch hazard area warning notice released Tuesday for sailors off Florida’s Space Coast suggested the next Falcon 9/Starlink launch has been rescheduled for Wednesday, July 8.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace astronomy Complex 40 Drone Ship falcon 9 Global Positioning System GPS GPS 3 GPS 3-3 L3 Harris Launch Launch Timeline Lockheed Martin Military Space Mission Reports Navigation News Reusability Space and Missile Systems Center spacex US Space Force X Home Page Highlight Below Right

Timeline for Falcon 9’s launch of the GPS 3 SV03 spacecraft

SpaceX’s Falcon 9 rocket is set for liftoff from Cape Canaveral on Tuesday carrying the U.S. Air Force’s next GPS 3-series navigation satellite destined for an orbit more than 12,000 miles above Earth.

The 229-foot-tall (70-meter) rocket is poised for launch from pad 40 at Cape Canaveral Air Force Station in Florida at 3:55:48 p.m. EDT (1955:48 GMT) Tuesday at the opening of a 15-minute launch window.

The Lockheed Martin-built GPS 3 SV03 satellite mounted atop the rocket is the third member of an upgraded generation of GPS navigation spacecraft, featuring higher-power signals that are more resilient to jamming, and additional broadcast frequencies to make the GPS network more interoperable with other navigation satellite fleets.

Unlike SpaceX’s previous launch of a GPS payload in 2018, the mission will fly a slightly different profile to reserve fuel for landing of the Falcon 9 booster. Read our mission preview story for more information.

The timeline below outlines the launch sequence for the Falcon 9 flight with the GPS 3 SV03 spacecraft.

See our Mission Status Center for details on the launch.

Data source: SpaceX

T-0:00:00: Liftoff

After the rocket’s nine Merlin engines pass an automated health check, hold-down clamps will release the Falcon 9 booster for liftoff from Complex 40.
After the rocket’s nine Merlin engines pass an automated health check, hold-down clamps will release the Falcon 9 booster for liftoff from pad 40.

T+0:01:11: Max Q

The Falcon 9 rocket reaches Max Q, the point of maximum aerodynamic pressure.
The Falcon 9 rocket reaches Max Q, the point of maximum aerodynamic pressure, a few seconds after surpassing the speed of sound.

T+0:02:31: MECO

The Falcon 9’s nine Merlin 1D engines shut down.
The Falcon 9’s nine Merlin 1D engines shut down.

T+0:02:35: Stage 1 Separation

The Falcon 9’s first stage separates from the second stage moments after MECO.
The Falcon 9’s first stage separates from the second stage moments after MECO.

T+0:02:42: First Ignition of Second Stage

The second stage Merlin 1D vacuum engine ignites for an approximately 6-minute burn to put the rocket and SES 9 into a preliminary parking orbit.
The second stage Merlin 1D vacuum engine ignites for a five-and-a-half-minute burn to put the rocket and GPS 3 SV03 into a preliminary parking orbit.

T+0:03:28: Fairing Jettison

The 5.2-meter (17.1-foot) diameter payload fairing jettisons once the Falcon 9 rocket ascends through the dense lower atmosphere. The 43-foot-tall fairing is made of two clamshell-like halves composed of carbon fiber with an aluminum honeycomb core.
The 5.2-meter (17.1-foot) diameter payload fairing jettisons once the Falcon 9 rocket ascends through the dense lower atmosphere. The 43-foot-tall fairing is made of two clamshell-like halves composed of carbon fiber with an aluminum honeycomb core.

T+0:06:45: First Stage Entry Burn Complete

The Falcon 9 rocket’s first stage descends back to Earth as its engines fire for the entry burn before landing on SpaceX’s drone ship in the Atlantic Ocean.

T+0:08:07: SECO 1

The second stage of the Falcon 9 rocket shuts down after reaching a preliminary low-altitude orbit. The upper stage and SES 9 begin a coast phase scheduled to last more than 18 minutes before the second stage Merlin vacuum engine reignites.
The second stage of the Falcon 9 rocket shuts down after reaching a preliminary orbit. The upper stage and GPS 3 SV03 begin a coast phase scheduled to about one hour before the second stage Merlin-Vacuum engine reignites.

T+0:06:45: First Stage Landing

The Falcon 9’s first stage booster lands on SpaceX’s drone ship “Just Read The Instructions” positioned in Atlantic Ocean northeast of Cape Canaveral.

T+1:03:28: Second Ignition of Second Stage

The Falcon 9's second stage Merlin engine restarts to propel the SES 9 communications satellite into a supersynchronous transfer orbit.
The Falcon 9’s second stage Merlin engine restarts to propel the GPS 3 SV01 navigation satellite into an elliptical transfer orbit ranging in altitude between about 250 miles (400 kilometers) and 12,550 miles (20,200 kilometers), with an inclination of 55 degrees.

T+1:04:13: SECO 2

The Merlin engine shuts down after a short burn to put the SES 10 satellite in the proper orbit for deployment.
The Merlin engine shuts down after a planned 45-second burn to put the GPS 3 SV03 satellite in the proper orbit for deployment.

T+1:29:14: GPS 3 SV03 Separation

The SES 9 satellite separates from the Falcon 9 rocket in an orbit with a predicted high point of about 39,300 kilometers (24,400 miles), a low point of 290 kilometers (180 miles) and an inclination of 28 degrees. Due to the decision to burn the second stage nearly to depletion, there is some slight uncertainty on the orbital parameters based on the exact performance of the launcher.
The GPS 3 SV03 satellite separates from the Falcon 9 rocket in an elliptical transfer orbit with an apogee, or high point, near the altitude of the GPS fleet, located around 12,550 miles (22,200 kilometers) above Earth.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace astronomy Complex 40 Drone Ship falcon 9 Global Positioning System GPS GPS 3 GPS 3-3 L3 Harris Launch Lockheed Martin Military Space Mission Reports Mission Status Center Navigation News Reusability Space and Missile Systems Center spacex US Space Force X Home Page Highlight

Live coverage: SpaceX counting down to launch of GPS navigation satellite

Live coverage of the countdown and launch of a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida with the U.S. Air Force’s GPS 3 SV03 navigation satellite. Text updates will appear automatically below. Follow us on Twitter.

SpaceX’s live video webcast begins around 15 minutes prior to launch, and will be available on this page.

Categories
aerospace astronomy Complex 40 Drone Ship falcon 9 Global Positioning System GPS GPS 3 GPS 3-3 L3 Harris Launch Lockheed Martin Military Space Mission Reports Navigation News Reusability Space and Missile Systems Center spacex US Space Force X Home Page Highlight Below Left

U.S. military makes adjustments in GPS launch to allow for SpaceX booster landing

The U.S. military’s third GPS 3-series satellite, designated SV03, is prepared for encapsulation inside the payload fairing of its SpaceX-built Falcon 9 rocket. Credit: SpaceX

SpaceX is preparing for liftoff Tuesday of its first mission for the U.S. Space Force, a launch from Cape Canaveral that will deploy a new GPS navigation satellite using a redesigned profile to allow the Falcon 9 rocket’s first stage booster to reserve enough propellant for landing on SpaceX’s drone ship in the Atlantic Ocean.

The launch profile adjustment to make landing of the Falcon 9 booster possible ended up saving “several million dollars” for the military from the original SpaceX launch contract value of $96.5 million, according to Walter Lauderdale, mission director for the GPS SV03 launch from the Space Force’s Space and Missile Systems Center.

The U.S. Space Force’s third GPS 3-series navigation satellite is set for liftoff from Cape Canaveral’s Complex 40 launch pad during a 15-minute launch window opening at 3:55 p.m. EDT (1955 GMT) Tuesday. There’s a 60 percent chance of favorable weather, according to a forecast issued by the Space Force’s 45th Weather Squadron.

Built by Lockheed Martin, the spacecraft will join two previous GPS 3 satellites launched by SpaceX in 2018 and by United Launch Alliance last year.

Tuesday’s mission is the first by SpaceX for the Space Force since the establishment of the new military branch in December.

“This is our first U.S. Space Force launch, and we’re really excited about it and hope this is the first of many, many of those launches in the future,” said Lee Rosen, SpaceX’s vice president of customer operations and integration.

During a nearly 90-minute launch sequence, SpaceX’s Falcon 9 rocket head northeast from Cape Canaveral and propel the 9,505-pound (4,311-kilogram) GPS 3 SV03 spacecraft into an elliptical transfer orbit ranging between about 250 miles (400 kilometers) and 12,550 miles (20,200 kilometers) in altitude. The Falcon 9’s on-board computer will aim to release the GPS 3 SV03 satellite into an orbit inclined 55 degrees to the equator.

On SpaceX’s first launch of a GPS navigation satellite in December 2018, military officials required the launch company to devote all of the Falcon 9 rocket’s capacity to placing the spacecraft into orbit. That meant SpaceX could not install landing legs on the Falcon 9’s first stage or attempt recovery of the booster.

SpaceX lands, refurbishes and re-flies Falcon 9 first stages to reduce costs, and it is the only launch company that currently reuses rocket hardware.

The launch of the GPS 3 SV03 mission Tuesday is the first flight with a high-priority national security satellite that will reserve propellant for landing of the rocket. SpaceX has recovered rockets on previous launches with military payloads, such as a Falcon Heavy mission last June, but those missions carried experimental technology demonstration and research satellites — not operational spacecraft like a GPS satellite.

On SpaceX’s first GPS launch in 2018, the military required the Falcon 9 rocket to place the spacecraft into an orbit with a higher perigee, or low point, of more than 740 miles, or about 1,200 kilometers. Teams also loaded extra fuel into the GPS spacecraft as an extra precaution.

It was the first high-priority national security payload to launch on a SpaceX rocket, and it was also the first satellite in a new design of GPS spacecraft.

“Simply put, there was insufficient performance given the mission trajectory and payload weight, combined with the uncertainties associated with this demanding mission,” Lauderdale said.

“Our evaluation of that mission’s performance, combined with additional work with SpaceX, reduced uncertainty in many areas,” Lauderdale said. “When we approached SpaceX to revise some spacecraft requirements for this mission … they responded with an opportunity to recover the booster in exchange for adding these requirements, as well as other considerations.”

SpaceX’s Falcon 9 rocket is prepared for rollout to Cape Canaveral’s Complex 40 launch pad. Credit: SpaceX

Officials are now more comfortable with the performance of the Falcon 9 rocket and the new GPS 3-series satellite design. That allowed engineers to load less propellant into the third GPS 3 satellite.

Mission planners also changed the perigee of the spacecraft’s initial orbit after launch from around 740 miles to 250 miles, according to Col. Edward Byrne, senior materiel leader at SMC’s Medium Earth Orbit space systems division.

“All that required from us was to reassess our burn profile, so we made some slight modifications to that burn profile, but there’s been no mission impact associated with the booster recovery option,” Byrne said in a pre-launch conference call with reporters.

One change to the Falcon 9 rocket requested by the Space Force for the GPS SV03 mission is a gray band of thermal insulation on the launcher’s upper stage. The thermal layer will help maintain kerosene fuel at proper temperatures during a nearly one-hour coast phase between the first and second burns of the upper stage’s Merlin engine.

SpaceX has tested the thermal layer before, but it did not fly on the first GPS 3 launch in 2018. The company has experimented with long-duration coasts of the Falcon upper stage to gather data before the first dedicated launch of a national security payload on SpaceX’s triple-core Falcon Heavy rocket late this year.

Military engineers charged with overseeing the design and production of SpaceX rockets for national security missions assessed numerous configuration changes since the Falcon 9’s first launch of a GPS satellite in 2018.

“Since the GPS 3 launch in December 2018, we’ve worked with SpaceX to stay current on the configuration of the Falcon 9, evaluating 665 changes,” Lauderdale said. “This enabled us to maintain the vehicle technical baseline that is the foundation of our independent mission assurance.”

The military has contracted with SpaceX to launch the fourth, fifth and sixth GPS 3 satellites. Assuming the launch of GPS SV03 goes according to plan, the SV04 mission could launch from Cape Canaveral on a Falcon 9 rocket as soon as Sept. 30, according to the Space and Missile Systems Center.

The GPS SV05 spacecraft is scheduled for launch on a Falcon 9 rocket in January.

Space Force officials have not yet approved SpaceX to launch critical national security satellites using previously-flown boosters. SpaceX has re-launched Falcon boosters 37 times to date with a 100 percent success record.

Lauderdale said the SMC mission assurance team is becoming more familiar with how SpaceX refurbishes rockets in between flights.

“I can’t commit to when we’ll be ready,” he said Friday, referring to when the military could launch a national security payload on a reused Falcon 9 booster.

SpaceX is building an all-new Falcon Heavy rocket for a national security launch late this year, and the company is expected to use a brand new booster for the next GPS launch no earlier than Sept. 30.

The military is currently considering proposals from four companies — SpaceX, ULA, Blue Origin and Northrop Grumman — in the next round of launch service procurements. Lauderdale said the military will allow launch service providers who win the the so-called “Phase 2” contracts to bid reused rockets for national security space launches in an effort to reduce costs.

“As a program, we are open and ready and looking forward to whatever industry wants to make available to us, but predominately we’ve been looking at the Phase 2 competition as that opportunity,” Lauderdale said.

A SpaceX Falcon 9 rocket stands vertical on pad 40 at Cape Canaveral Air Force Station before launch of the GPS 3 SV03 spacecraft. Credit: Lockheed Martin

The GPS 3 SV03 spacecraft awaiting launch Tuesday will use its on-board propulsion system to circularize its orbit after separation from the Falcon 9 rocket. It’s expected to enter service later this year.

Both of the previous GPS 3-series satellites are healthy, according to the U.S. Space Force’s Space and Missile Systems Center. They were “set healthy” and officially entered the operational GPS constellation Jan. 13 and April 1, an SMC spokesperson said.

The launch of the GPS 3 SV03 spacecraft is timed to inject the satellite into Plane E, Slot 4 of the GPS constellation. That position is currently occupied by a GPS satellite launched May 10, 2000, from Cape Canaveral on a Delta 2 rocket. Military officials did not say whether that satellite, which was originally designed for a 10-year mission, will be decommissioned or moved to another slot in the GPS network.

The GPS satellites are spread among six orbital planes, each with four primary spacecraft, plus spares. Byrne said Friday the GPS constellation currently consists of 31 satellites.

The GPS network provides positioning and timing services worldwide for military and civilian users, beaming signals relied upon by airliners, ATMs, drivers and smart bombs, among numerous other users.

“The Global Positioning System has become part of our critical national infrastructure, from transportation to financial markets to energy grids to the rideshare industry,” said Tonya Ladwig, acting vice president of Lockheed Martin’s navigation systems division. “It’s no longer a matter of did you use GPS today. It’s a matter of how many times did you actually use it.”

The GPS 3 satellites provide more accurate navigation signals and boasting longer design lifetimes of 15 years. The new GPS 3 satellites also broadcast e a new L1C civilian signal that is compatible with Europe’s Galileo network and Japan’s Quasi-Zenith Satellite System.

Other space-based navigation networks operated by Japan and China are also adopting similar compatible signals.

Like the previous line of Boeing-built GPS 2F satellites, all GPS 3-series spacecraft broadcast a dedicated L5 signal geared to support air navigation. The GPS 3 satellites also continue beaming an encrypted military-grade navigation signal known as M-code.

The M-code signal allows GPS satellites to broadcast higher-power, jam-resistant signals over specific regions, such as a military theater or battlefield. The capability provides U.S. and allied forces with more reliable navigation services, and could also allow the military to intentionally disrupt or jam civilian-grade GPS signals in a particular region, while the M-code signal remains unimpeded.

L3Harris Technologies builds the navigation payloads for the GPS 3 satellites.

Ladwig said the GPS 3 SV04 and SV05 spacecraft are complete and in storage awaiting launch, and the next three satellites are fully assembled and undergoing environmental testing. SV09 and SV10 are currently being assembled at Lockheed Martin’s GPS satellite factory near Denver.

Lockheed Martin is on contract with the Defense Department to build 10 GPS 3 satellites — two of which have launched — and up to 22 upgraded GPS 3F-series satellites.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace astronomy BlackSky Global BlackSky Global 7 BlackSky Global 8 Broadband Commerical Space Earth observation falcon 9 Global Positioning System GPS GPS 3-3 kennedy space center Launch Launch Pad 39A LeoStella Lockheed Martin Military Space Mission Reports Navigation News Reusability rideshare spacex starlink Starlink 9 Telecom US Space Force Vera Rubin Observatory VisorSat X Home Page Highlight

SpaceX delays Starlink launch until no earlier than Sunday

SpaceX’s Falcon 9 rocket stands vertical on pad 39A Friday at NASA’s Kennedy Space Center. Credit: Spaceflight Now

SpaceX scrubbed the planned launch from the Kennedy Space Center of a Falcon 9 rocket Friday with the company’s next 57 Starlink Internet satellites and a pair of commercial Earth-imaging surveillance satellites. Officials did not immediately confirm a new target launch date, but SpaceX is expected to try again as soon as Sunday.

Launch crews at NASA’s Kennedy Space Center in Florida were counting down to liftoff of a 229-foot-tall (70-meter) Falcon 9 rocket at 4:18 p.m. EDT (2018 GMT) Friday from pad 39A at the Kennedy Space Center, but officials said the launch would be postponed a few hours before the scheduled liftoff time.

In a tweet, SpaceX said it was “standing down from today’s Starlink mission.” The company said its “team needed additional time for pre-launch checkouts, but Falcon 9 and the satellites are healthy.”

SpaceX said it will announce a new target launch date once confirmed by the U.S. Space Force’s Eastern Range, which provides launch support for all space missions taking off from Cape Canaveral Air Force Station and the Kennedy Space Center.

The schedule slip sets the stage for two Falcon 9 launches from different pads at Cape Canaveral in the coming days.

SpaceX is preparing to launch a Falcon 9 rocket from pad 40 at Cape Canaveral on Tuesday at 3:55 p.m. EDT (1955 GMT) with the U.S. military’s next GPS navigation satellite.

In a conference call with reporters Friday to discuss the GPS launch, a SpaceX official said the company was still evaluating when the Falcon 9 rocket with the Starlink broadband satellites and BlackSky Earth-imaging payloads might be ready to fly.

An updated airspace warning notice posted on a Federal Aviation Administration website late Friday suggested SpaceX might try again to launch the Starlink/BlackSky rideshare mission Sunday.

If the Starlink launch is ready to go within a few days, SpaceX might elect to go forward with that mission before the GPS launch Tuesday. The notice to pilots released Friday suggests SpaceX aims to do just that.

In the event of a further delay, managers are expected to prioritize the GPS launch Tuesday because the mission is for the U.S. Space Force, a key customer for SpaceX. SpaceX did not disclose the reason for the launch delay Friday, but the issue takes more than a few days to resolve, the Starlink launch could be pushed back until after the GPS launch.

Lee Rosen, SpaceX’s vice president of customer operations and integration, said Friday that SpaceX could perform two launches from different pads at Cape Canaveral in relatively short order. He said SpaceX could go forward with another Falcon 9 launch after a review of data from the previous mission, which he said typically takes from a half-day to one day to complete.

Launch companies usually examine flight data from all launches to look for close calls or any other unusual behavior that might impact future missions.

Brig. Gen. Doug Schiess, commander of the 45th Space Wing, said the Eastern Range would also likely be able to support two Falcon 9 launches within 24 hours of each other, if necessary.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Categories
aerospace astronomy Astrotech Complex 40 Drone Ship falcon 9 Global Positioning System GPS GPS 3 GPS 3-3 L3 Harris Launch Lockheed Martin Mission Reports Navigation News Reusability Space and Missile Systems Center spacex Static Fire US Space Force X Sidebar

GPS satellite ready for installation on Falcon 9 rocket for launch next week

The third GPS 3-series navigation satellite, named “Columbus,” is seen before shipment from Lockheed Martin’s factory in Denver. Credit: Lockheed Martin

The U.S. military’s next GPS navigation satellite moved to a SpaceX launch facility late Thursday at Cape Canaveral, ready for attachment with a Falcon 9 rocket for liftoff June 30 to take the place of an aging GPS spacecraft launched from Florida’s Space Coast more than 20 years ago.

Built by Lockheed Martin, the spacecraft was closed up inside the payload shroud of its Falcon 9 rocket Sunday inside the Astrotech payload processing facility in Titusville, then trucked to Cape Canaveral Air Force Station late Thursday. Once in position inside a SpaceX rocket hangar, ground teams planned to mount the spacecraft and payload fairing to the Falcon 9 launcher that will carry the GPS satellite into orbit.

The third in the military’s new GPS 3-series of navigation satellites is scheduled for launch from Cape Canaveral’s Complex 40 launch pad during a 15-minute window opening at 3:55 p.m. EDT (1955 GMT) Tuesday, June 30.

The GPS 3 SV03 spacecraft follows the launch of SV01 and SV02 in December 2018 and August 2019. Those satellites launched on SpaceX Falcon 9 and United Launch Alliance Delta 4 rockets, respectively.

Both of the previous GPS 3-series satellites are healthy, according to the U.S. Space Force’s Space and Missile Systems Center. They were “set healthy” and officially entered the operational GPS constellation Jan. 13 and April 1, an SMC spokesperson said.

The GPS 3 SV03 satellite will launch into an elliptical transfer orbit aboard the Falcon 9 rocket. After deployment from the launch vehicle, the GPS satellite will use its own propulsion system to reach a circular orbit inclined 55 degrees to the equator at an altitude of about 12,550 miles (20,200 kilometers).

The launch June 30 is timed to place the GPS 3 SV03 spacecraft into Plane E, Slot 4 of the GPS constellation. That position is currently occupied by a GPS satellite launched May 10, 2000, from Cape Canaveral on a Delta 2 rocket. Military officials did not say whether that satellite, which was originally designed for a 10-year mission, will be decommissioned or moved to another slot in the GPS network.

The GPS satellites are spread among six orbital planes, each with four primary spacecraft, plus spares.

The GPS network provides positioning and timing services worldwide for military and civilian users, beaming signals relied upon by airliners, ATMs, drivers and smart bombs, among numerous other users.

The GPS 3 satellites provide more accurate navigation signals and boasting longer design lifetimes of 15 years. The new GPS 3 satellites also broadcast e a new L1C civilian signal that is compatible with Europe’s Galileo network and Japan’s Quasi-Zenith Satellite System.

Other space-based navigation networks operated by Japan and China are also adopting similar compatible signals.

Like the previous line of Boeing-built GPS 2F satellites, all GPS 3-series spacecraft broadcast a dedicated L5 signal geared to support air navigation. The GPS 3 satellites also continue beaming an encrypted military-grade navigation signal known as M-code.

The M-code signal allows GPS satellites to broadcast higher-power, jam-resistant signals over specific regions, such as a military theater or battlefield. The capability provides U.S. and allied forces with more reliable navigation services, and could also allow the military to intentionally disrupt or jam civilian-grade GPS signals in a particular region, while the M-code signal remains unimpeded.

L3Harris Technologies builds the navigation payloads for the GPS 3 satellites.

SpaceX test-fired a brand new Falcon 9 rocket Thursday on pad 40 at Cape Canaveral Air Force Station in preparation for the GPS satellite launch. Credit: William Harwood/CBS News

The launch June 30 will be the first dedicated flight by SpaceX for the U.S. Space Force since the new military branch was established in December.

It comes four days after the scheduled launch Friday of a different Falcon 9 rocket from pad 39A at NASA’s Kennedy Space Center, a few miles to the north of pad 40. That mission was set to loft 57 satellites for SpaceX’s Starlink broadband Internet constellation, along with a pair of commercial Earth-imaging microsatellites for BlackSky.

SpaceX test-fired the Falcon 9 rocket assigned to the GPS launch Thursday, less than a day after a similar static fire test of the Falcon booster for the Starlink/BlackSky mission.

Unlike SpaceX’s launch of the first GPS 3-series satellite in 2018, military officials overseeing the flight have allowed SpaceX to set aside enough propellant reserve on the Falcon 9 booster to attempt a landing on an offshore drone ship in the Atlantic Ocean. SpaceX flew the Falcon 9 rocket in a fully expendable configuration for the GPS 3 SV01 launch in 2018.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.